ions1 section.1

Probability, Measure and Martingales

November 17, 2022

1 Measurable sets and functions

given a set Ω ,

- $\mathcal{P}(\Omega)$ is the power set of Ω
- $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is an **algebra** on Ω if :
 - (i) $\emptyset \in \mathcal{F}$
 - (ii) if $E \in \mathcal{F}$ then $E^C = \Omega \backslash E \in \mathcal{F}$
 - (iii) if $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$
- $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is σ -algebra/ σ -field on Ω if :
 - (i) $\emptyset \in \mathcal{F}$
 - (ii) if $E \in \mathcal{F}$ then $\Omega \backslash E \in \mathcal{F}$
 - (iii) if $E_n \in \mathcal{F}$ for n = 1, 2, ... then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{F}$

given $A \in \mathcal{P}(\Omega)$, $\sigma(A)$ denotes the smallest σ -algebra containing all the sets in A. Note that the (countable) intersection of σ -algebras is also a σ -algebra [1.3].

Examples:

- trivial: $\{\emptyset, \Omega\}$
- simple: $\{\emptyset, \Omega, A, A^C\} = \sigma(\{A\}) = \sigma(A)$
- trace: given a set $E \subseteq \Omega$, a σ -algebra \mathcal{F} , then $\{E \cap A : A \in \mathcal{F}\}$ is a σ -algebra.
- ullet Borel σ -algebra: the σ algebra generated by *open sets* on a topological space
- Borel σ -algebra on \mathbb{R} : $\sigma(\{\text{open sets in }\mathbb{R}\}) = \sigma(\{\text{open intervals in }\mathbb{R}\}) = \sigma(\{(-\infty, a]: a \in \mathbb{R}\})$ (you can write any open set as a countable union of open intervals, and any open interval in terms of half lines)

Measurable space: (Ω, \mathcal{F}) a set and a σ -algebra on it

Product spaces

Given a collection of measurable spaces $(\Omega_i, \mathcal{F}_i)_{i \in I}$, their product space is (Ω, \mathcal{F}) , defined as follows:

- $\Omega = \prod_{i \in I} \Omega_i$ (a cartesian product)
- $\mathcal{F} = \sigma\left(\left\{A = \prod_{i \in I} A_i : \forall i \in I \ A_i \in \mathcal{F}_i, \forall \text{ but infinite } i \ A_i = \Omega_i\right\}\right)$ (not a cartesian product the A's are called cylinder sets)
 - note that if I is finite, \mathcal{F} is just a cartesian product.

Note that we often write $\mathcal{F} = \times_{i \in I} \mathcal{F}_i$, but this is still not a Cartesian product in the countable case.

Product spaces on \mathbb{R} : $\mathscr{B}(\mathbb{R}^d)=\prod_1^d\mathscr{B}(\mathbb{R})$ clearly \supseteq , because $d<\infty$, and \subseteq because any open set in \mathbb{R}^d can be written as a product of open hypercubes.

π and λ systems

a collection of sets A is a

- π -system if it is stable under intersections i.e. $A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$
- λ -system if
 - $-\Omega \in \mathcal{A}$
 - $-A, B \in \mathcal{A}, A \subseteq B \implies B \backslash A \in \mathcal{A}$
 - $\{A_n\}_{n\geq 1}\subseteq \mathcal{A}$, for all $n\geq 1$ $A_n\subseteq A_{n+1}$ then $\bigcup_{n\geq 1}A_n\in \mathcal{A}$

 \mathcal{A} is a σ -algebra \iff it is both a π -system and a λ -system. [proof: use $B_n = \bigcup_{k=1}^n A_k$ - note this is constructed using the π -system rule, as each B_n is finite]

 π – λ systems lemma: given $\mathcal M$ is a λ -system, $\mathcal A$ a π -system, then $\mathcal A\subseteq\mathcal M$ \Longrightarrow $\sigma(\mathcal A)\subseteq\mathcal M$

[proof: let $\lambda(\mathcal{A})$ be the \cap of all λ -systems containing \mathcal{A} , clearly $\lambda(\mathcal{A}) \subseteq \mathcal{M}$, and prove $\lambda(\mathcal{A})$ is a π -system]

Random variables

given (Ω, \mathcal{F}) and (E, \mathcal{E}) are measurable spaces, $f: \Omega \to E$ is a **measurable function/random variable** if $\forall A \in \mathcal{E} \ f^{-1}(A) = \{\omega \in \Omega : f(\omega) \in A\} \in \mathcal{F}$.

Random variables/measurable functions are closed under composition.

 $A \subset \Omega$ is an event/measurable set \iff $\mathbf{1}_A$ is measurable.

 $\sigma(f_i:i\in I):=$ the smallest σ -algebra on Ω st all $f_i:\Omega\to E_i$ are measurable wrt to it.

- Note that $\sigma(\{A_i:i\in I\})=\sigma(\mathbf{1}_{A_i}:i\in I)$, as expected.
- for a single RV X from (Ω,\mathcal{F}) to (E,\mathcal{E}) with $\mathcal{E}=\sigma(\mathcal{A})$, then $\sigma(X)=\{X^{-1}(A):A\in\mathcal{E}\}=\sigma(X^{-1}(A):A\in\mathcal{A}).$

in \mathbb{R} or $[-\infty, \infty]$, thus f is measurable $\iff \forall t \in \mathbb{R} \{x : f(x) \leq t\} \in \mathcal{F}$

Measurable functions on $\mathbb R$ or $[-\infty,\infty]$ are closed under addition, multiplication, max, min, divison, composition, sup, inf, lim sup and lim inf.

$$f$$
 is a simple function if $f = \sum_{k=1}^{n} a_k \mathbf{1}_{E_k}$ for $n \geq 1, E_k \in \mathcal{F}, a_k \in \mathbb{R}$.

f is measurable iff it is a limit of simple functions.

if $X:\Omega\to E$ is an RV across (Ω,\mathcal{F}) and (E,\mathcal{E}) , g another RV on (Ω,\mathcal{F}) , g is $\sigma(X)$ -measurable $\iff g=h\circ X$ for some RV h on (E,\mathcal{E}) . [no proof]

Monotone Class theorem

Given \mathcal{H} is a class of bounded functions $\Omega \to \mathbb{R}$ st:

- 1. \mathcal{H} is a vector space over \mathbb{R} ,
- 2. the constant function 1 is in \mathcal{H}
- 3. \mathcal{H} is closed under upwards limits to bounded functions:

If $\mathcal{C}\subseteq\mathcal{H}$ is closed under pointwise multiplication, then \mathcal{H} contains all bounded $\sigma(\mathcal{C})$ -measurable functions

Correspondence to $\pi - \lambda$ systems lemma: let $\mathcal{C} = \{\mathbf{1}_A : A \in \mathcal{A}\}$ for \mathcal{A} a π -system: then.

- $\mathbf{1}_A \times \mathbf{1}_B = \mathbf{1}_{A \cap B}$, so $\mathcal{C} = \mathsf{a} \ \pi$ -system
- $\mathbf{1} \in \mathcal{H}$ is just $\mathbf{1}_{\Omega}$
- ullet vector space properties of ${\cal H}$ gives us complements/etc.
- upwards limits gives the union property of λ -systems

Proof is non-examinable.

2 Measures and measure spaces

Given (Ω, \mathcal{F}) is a **measurable space**, a **measure** on (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to [0, \infty]$ st

- (i) set function: $\mu(\emptyset) = 0$
- (ii) countably additive: $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ if the E_n are disjoint sets in \mathcal{F}

then $(\Omega, \mathcal{F}, \mu)$ is measure space.

useful properties of a measure space $(\Omega, \mathcal{F}, \mu)$ [2.3]:

- 1. additive: $A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$
- 2. increasing: if $A \subseteq B$ then $\mu(A) \le \mu(B)$
- 3. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- 4. continuous from below: if $A_n \uparrow A$ then $\mu(A_n) \uparrow \mu(A)$
- 5. continuous from above: if $B_n \downarrow B$ and $\mu(B_k) < \infty$ for some k, then $\mu(B_n) \downarrow \mu(B)$
- 6. $\mu(\bigcup_{n\geq 1} A_n) \leq \sum_{n\geq 1} \mu(A_n)$ (σ -subadditive)

[2.4] given $\mu: \mathcal{A} \to [0,\infty)$ is an additive set function (not a measure) on an algebra \mathcal{A} taking only finite values, then μ is countably additive (i.e. a measure) \iff for all sequences $(A_n) \subseteq \mathcal{A}$ with $A_n \downarrow \emptyset$ $\mu(A_n) \to 0$

a measure μ is **finite** if $\mu(\Omega) < \infty$, and a **probability measure** if $\mu(\Omega) = 1$, so $(\Omega, \mathcal{F}, \mu/\mathbb{P})$ is a probability space.

 μ is σ -finite if $\exists (K_n)_{n\geq 1}\in \mathcal{F}$ st $\mu(K_n)<\infty$ for all n, and $\bigcup_{n\geq 1}K_n=\Omega$

 $A\in\mathcal{F}$ is a **null set** if $\mu(A)=0$, and a property holds **almost everywhere** if it it true for $\forall \omega\in\Omega\backslash A$ for A null. In probabilty measures, we normally call this **almost surely**

A measure ν is **absolutely continuous** wrt to a measure μ (and write $\nu \ll \mu$) if $\forall A \ \mu(A) = 0 \implies \nu(A) = 0$. ν and μ are equivalent $(\mu \sim \nu)$ if $\nu \ll \mu$ and $\mu \ll \nu$.

Uniqueness of extension: given μ_1, μ_2 are measures on (Ω, \mathcal{F}) and $\mathcal{A} \subseteq \mathcal{F}$ with $\mathcal{F} = \sigma(\mathcal{A})$, if $\mu_1(\Omega) = \mu_2(\Omega) < \infty$ and $\mu_1 = \mu_2$ on \mathcal{A} , then $\mu_1 = \mu_2$ on \mathcal{F} .

Carathéodory Extension Theorem: given $(\Omega, \mathcal{F} = \sigma(\mathcal{A}))$, where \mathcal{A} is an algebra, if $\mu_0: \mathcal{A} \to [0,\infty]$ is a countably additive set function, then $\exists \mu: \mathcal{F} \to [0,\infty]$ a measure on (Ω,\mathcal{F}) st $\mu=\mu_0$ on \mathcal{A} . [proof like part A outer measure]

- General outer measure: given the same setup as the C. Ext. Theorem, $\mu^*(B) = \inf \left\{ \sum_{n=1}^\infty m(A_n) : A_n \in \mathcal{A}, B \subseteq \bigcup_{n=1}^\infty A_n \right\}$
- measurable sets under the outer measure: $B \subseteq \Omega$ is measurable if $\forall E \in \Omega$, $\mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap B^C)$

If $(\Omega, \mathcal{F}, \mu)$ is a measure space and $\mathcal{G} \subseteq \mathcal{F}$ a σ -algebra, then $(\Omega, \mathcal{G}, \mu|_{\mathcal{G}})$ is the **restriction** of the measure space, and is itself a measure space.

The **sum** of a countable sequence of probability measures is a probability measure - if (Ω, \mathcal{F}) is a measurable space, and $(\mu_n)_{n\geq 1}$ a seq of prob measures, $(a_n)_{n\geq 1}$ a sequence with $\sum_n a_n = 1$, then $\mu(A) := \sum_n a_n \mu_n(A)$ is a prob measure.

Basic conditional probability

$$\mu(A) = \mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \text{ for } A \in \mathcal{F}$$
 (1)

is the **conditional probability** measure on $(\Omega, \mathcal{F}, \mathbb{P})$ given a set B with $\mathbb{P}(B) > 0$.

$$\mathbb{P}(A \mid \sigma(B))(\boldsymbol{\omega}) := \mathbb{P}(A \mid B)\mathbf{1}_{B}(\boldsymbol{\omega}) + \mathbb{P}(A \mid B^{C})\mathbf{1}_{B^{C}}(\boldsymbol{\omega})$$

is the conditional probability given a σ -algebra - given a fixed ω , it is a probability measure over sets A, but for a fixed A, it is an RV.

Measures on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$

 $F: \mathbb{R} \to \mathbb{R}$ is a distribution function if:

- 1. $F: \mathbb{R} \to [0, 1]$
- 2. F is increasing
- 3. $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$
- 4. F is right-continuous

Given a measure μ on $\mathscr{B}(\mathbb{R})$, the **distribution function** of μ is $F_{\mu}(x) = \mu((-\infty, x])$, which satisfies the requirements above.

Lebesgue's theorem: for any distribution function F, there is a unique Borel measure μ_F on $\mathscr{B}(\mathbb{R})$ st $F=F_{\mu_F}$. i.e. there is a 1-1 correspondence.

Leb is the unique Borel measure on \mathbb{R} st $\forall a, b \ a \leq b \ \mathrm{Leb}((a,b]) = b - a$.

Distribution of an RV

Given X is a random variable from (Ω, \mathcal{F}) to (E, \mathcal{E}) , where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space:

- $\bullet \Omega \xrightarrow{X} \mathbb{R}$
- $\bullet \ [0,1] \xleftarrow{\mathbb{P}} \mathcal{F} \xleftarrow{X^{-1}} \mathcal{B}, \text{ or indeed } [0,1] \xleftarrow{\mathbb{P}} \sigma(X) \xleftarrow{X^{-1}} \mathcal{B}$

Note that X^{-1} is the **pre-image** function $X^{-1}(A)=\{\omega:X(\omega)\in A\}$, not an inverse!

Define the law/distribution $\mu_X:\mathcal{B}\to [0,1]$ by $\mu_X:=\mathbb{P}\circ X^{-1}$. This is a probability measure on (\mathbb{R},\mathcal{B}) , also known as the <u>image measure</u> of \mathbb{P} via X, or the pushforward measure

The distribution function of X is $F_X(a): \mathbb{R} \to \mathbb{R}$ defined by $F_X(a):=\mathbb{P}(X \le a)=\mu_X((-\infty,a])$ (see above)

We write $X \sim Y$ to mean $\mu_X = \mu_Y$, and X,Y can even be defined on different probability spaces (Ω, \mathcal{F})

Given $(\Omega, \mathcal{F}, \mathbb{P})$ is a prob space, (E, \mathcal{E}) and $G, \mathcal{G})$ are meas spaces, $X: \Omega \to E; Y: E \to G$ then the image measure of " μ_X via Y" is the image measure of " μ via $Y \circ X$ "

Existence of RVs

If F is a function with properties 1-4 above, we can construct an RV on $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}(0,1), \mathrm{Leb})$ with distribution function $F_X = F$.

Define the right continuous inverse of F, also known as the *quantile* function

$$F^{-1}(z) = \inf \{ y : F(y) > z \}$$

 F^{-1} is increasing, and so measurable.

Then, $\{\omega : \omega < F(x)\} \subseteq \{\omega : F^{-1}(\omega) \le x\} \subseteq \{\omega : \omega \le F(x)\}$, and both outer sets have the same Lebesgue measure, F(x).

Thus.

$$F_X(x) = \mathbb{P}(X \le x) = \operatorname{Leb}(X \le x) = \operatorname{Leb}(F^{-1} \le x) = \operatorname{Leb}\left(\left\{\omega : F^{-1}(\omega) \le x\right\}\right) = \operatorname{Leb}\left(\left\{\omega : \omega < F(x)\right\}\right) = F(x) = \operatorname{Leb}\left(\left\{\omega : \omega < F(x)\right\}\right) =$$

[note $\mathbb{P} = \text{Leb}$, $X = F^{-1}$, $\Omega = (0,1)$ so the final inequality is true]

Product measure

Given $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)_{i=1..N}$ are probability measures, there is a unique measure \mathbb{P} on $(\Omega, \mathcal{F}) = (\prod_{i=1}^N \Omega_i, \times_{i=1}^N \mathcal{F}_i)$ st $\mathbb{P}(E_1 \times \cdots \times E_n) = \mathbb{P}_1(E_1) \cdots \mathbb{P}_N(E_n)$ for $E_i \in \mathcal{F}_i$. \mathbb{P} is the **product measure**, and is often written $\otimes_{i \leq N} \mathbb{P}_i$.

Thus, the product measure is specified by its marginals. This is not true for general measures on product spaces (where two different measures could have the same marginals)

3 Independence

A collection of σ -algebras $\mathcal{G}_i: i \leq n$ is **independent** iff $\forall A_i \in \mathcal{G}_i, i \leq n \ \mathbb{P}(\bigcap_{i \leq n} A_i) = \prod_{i \leq n} \mathbb{P}(A_i)$

For <u>sequences</u> $(\mathcal{G}_n)_{n\geq 1}$ of σ -algebras by $\forall A_n\in\mathcal{G}_n, n\geq 1$ $\mathbb{P}(\bigcap_{n\geq 1}A_i)=\prod_{n\geq 1}\mathbb{P}(A_i)$ by continuity of measure

If our collection of σ -algebras $(\mathcal{G}_i)_{i\in\mathcal{I}}$ can be written as $(\sigma(\mathcal{A}_i))_{i\in I}$ for $\underline{\pi}$ -systems $\underline{\mathcal{A}_i\in\mathcal{F}}$, then $(\mathcal{G}_i)_{i\in\mathcal{I}}$ are independent $\iff \mathbb{P}(\bigcap_{i\in J}A_i)=\prod_{i\in J}\mathbb{P}(A_i)$ for any $A_i\in\mathcal{A}_i$, $A_i\in\mathcal{A}_i$, $A_i\in\mathcal{A}_i$, $A_i\in\mathcal{A}_i$ for any finite subset $A_i\in\mathcal{A}_i$. [see theorem 3.5]

A <u>collection of events</u> (finite or countable) is independent \iff their generated σ -algebras are \iff the standard condition from Part A.

A finite or countable collection of **RVs** $(X_i)_{i\in\mathcal{I}}$, maps from $(\Omega, \mathcal{F}, \mathbb{P})$ to measurable spaces $(E_i, \mathcal{E}_i)_{i\in\mathcal{I}}$, are independent

- \iff $(\sigma(X_i))_{i\in\mathcal{I}}$ are independent
- $\iff \mathbb{P}(X_i \in A_i \text{ for all } i \in J) = \prod_{i \in J} \mathbb{P}(X_i \in A_i) \text{ for any } A_i \in \mathcal{E}_i, i \in J \text{ for any finite subset } J \subseteq \mathcal{I}.$
- (for real-valued) $\iff \forall n \geq 1, x_1, ..., x_n \in \mathbb{R} \text{ or } \overline{\mathbb{R}} \mathbb{P}(X_1 \leq x_1, ..., X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \cdots \mathbb{P}(X_n \leq x_n)$ (using the π -systems def)

For a finite family of RVs, they are independent \iff their joint dist $\mu_{(X_1,\dots,X_n)}$ on the product space $(\prod_{i\leq n} E_i, \times_{i\leq n} \mathcal{E}_i)$ is the product measure of the marginal dists μ_{X_i}

if $(X_i)_{i\in\mathcal{I}}$ are independent, and $f_i:E_i\to\mathbb{R}$ are measurable, then $(f_i(X_i))_{i\in\mathcal{I}}$ are independent RVs.

Limits

The **tail** σ -algebra of a sequence of RVs $(X_n)_{n\geq 1}$ is $\mathcal{T}:=\bigcap_{n=1}^{\infty}\mathcal{T}_n$, where $\mathcal{T}_n:=\sigma(X_{n+1},X_{n+2},....)$

Kolmogorov's 0-1 **law**: The tail σ -algebra of an independent sequence of RVs contains only events of probability 0 or 1, so any \mathcal{T} -measurable RV is a.s. constant. e.g. $A=\{(X_n)_{n\geq 1} \text{ converges}\}$

For a sequence $(A_n)_{n\geq 1}$ of sets in \mathcal{F} :

$$\begin{aligned} \{A_n \text{ i.o.}\} &:=: \limsup_{n \to \infty} A_n \\ &:= \bigcap_{n=1}^{\infty} \bigcup_{m \geq n} A_m \\ &= \{\omega \in \Omega : \omega \in A_m \text{ for infinitely many } m\} \end{aligned}$$

(Note i.o. = occurs infinitely often)

$$\begin{split} & \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{m \ge n} A_m \\ & = \{ \omega \in \Omega : \exists m_{\omega} \text{ st } \omega \in A_m \text{ for all } m \ge m_{\omega} \} \\ & = \{ A_n \text{ eventually} \} = \{ A_n^C \text{ i.o.} \}^C \end{split}$$

Note that $\mathbf{1}_{\limsup_{n \to \infty} A_n} = \limsup_{n \to \infty} \mathbf{1}_{A_n}$, and the same for \liminf

Fatou's lemma (and reverse): $\mathbb{P}(\liminf_{n\to\infty}A_n)\leq \liminf_{n\to\infty}\mathbb{P}(A_n)$, and $\mathbb{P}(A_n$ i.o.) = $\mathbb{P}(\limsup_{n\to\infty}A_n)\geq \limsup_{n\to\infty}\mathbb{P}(A_n)$

BC1: Borel-Cantelli Lemma #1: if $\sum_{n\geq 1}\mathbb{P}(A_n)<\infty$ then $\mathbb{P}(A_n \text{ i.o.})=0$.

BC2: for A_n independent, then if $\sum_{n\geq 1}\mathbb{P}(A_n)=\infty$ then $\mathbb{P}(A_n \text{ i.o.})=1$

4 Integration & Expectation FINISH

Notation:

$$\int f \, \mathrm{d}\mu \equiv \int_{\Omega} f \, \mathrm{d}\mu \equiv \int f(\boldsymbol{\omega}) \, \mu(\mathrm{d}\boldsymbol{\omega})$$

See part A for integration definitions, just using a more general measure. Includes the MCT, DCT, Fatou, Reverse Fatou etc.

Radon-Nikodym Theorem: given μ, ν are prob measures on $(\Omega, \mathcal{F}), \nu \ll \mu \iff \exists$ an RV $f \geq 0$ st $\nu(A) = \int_A f \ \mathrm{d}\mu$ for all $A \in \mathcal{F}$. f is the Radon-Nikodym derivative of ν wrt μ , and is often written $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$. $v \sim \mu \iff f \geq 0 \ \mu - a.s.$, and then $\frac{\mathrm{d}\mu}{\mathrm{d}\nu} = 1/f$

Scheffé: if $f_n, f \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ and $f_n \to f$ pointwise, then $\int |f_n - f| \ d\mu \to 0 \iff \int |f_n| \ d\mu \to \int |f| \ d\mu$. [no proof]

If $X:\Omega\to E, g:E\to\mathbb{R}$ for a prob space $(\Omega,\mathcal{F},\mathbb{P})$, measure space (E,\mathcal{E}) and μ_X is the law of X, then g is μ_X -integrable $\iff g\circ X$ is \mathbb{P} -integrable, and then $\int_E g(x)\;\mu_X(\mathrm{d}x)=\int_\Omega g(X(\pmb{\omega}))\;\mathbb{P}(\mathrm{d}\mu)$

The expectation of X is $\mathbb{E}[X]:=\int X\ \mathrm{d}\mathbb{P}=\int_{\Omega}X(\boldsymbol{\omega})\ \mathbb{P}(\mathrm{d}\boldsymbol{\omega})=\int_{\mathbb{R}}x\mu_X$

The **variance** of X is $\mathbb{E}[X - \mathbb{E}[X]^2]$, as expected. The n'th standardised moment...

Fubini/Tonelli: given $(\Omega, \mathcal{F}, \mathbb{P})$ is the product of $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$ for i = 1, 2, and f(x, y) is measurable on (Ω, \mathcal{F}) :

- $x \mapsto \int_{\Omega_2} f(x,y) \, \mathbb{P}_2(\mathrm{d}y), y \mapsto \int_{\Omega_2} f(x,y) \, \mathbb{P}_1(\mathrm{d}x)$ are $\mathcal{F}_1, \mathcal{F}_2$ -measurable resp.
- if f is \mathbb{P} -integrable on Ω , or $f \geq 0$: $\int_{\Omega} f \ d\mathbb{P}$ equals the repeated integrals (though if we are doing this because $f \geq 0$, it could be ∞)

X,Y on a prob space $(\Omega,\mathcal{F},\mathbb{P})$ are independent $\iff \forall f,g$ measurable, $f,g\geq 0$ $\mathbb{E}[f(X)g(y)]=\mathbb{E}[f(X)]\mathbb{E}[g(Y)]$

integration on product space - fubton

indep in terms of expectation of funcs

5 Complements & more integration

5.1 Modes of convergence

almost surely $X_n \to X$ a.s. $\iff \mathbb{P}[X_n \to X] = \mathbb{P}(\{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$

in probability $X_n \stackrel{\mathbb{P}}{\to} X \iff \forall \varepsilon > 0 \ \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0$

in $\mathcal{L}^p/L^p/$ pth moment $X_n \overset{L^p}{\to} X$ iff $X \in \mathcal{L}^p, \forall n \ X_n \in \mathcal{L}^p$ and $\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0$

weakly in \mathcal{L}^1 if $X_n, X \in \mathcal{L}^1$ and \forall bounded RVs $Y \lim_{n \to \infty} \mathbb{E}[X_n Y] = \mathbb{E}[XY]$

weakly/in distribution if $\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$ for every $x\in\mathbb{R}$ at which F_X is cont.

Relationships:

a.s.
$$\Longrightarrow$$
 in prob \Longrightarrow in dist
$$\label{eq:Lp} \Uparrow$$
 in L^p \Longrightarrow weakly in L^p

5.2 Useful inequalities

Markov's inequality: if $X \ge 0$ is an RV, $\forall \lambda > 0$ $\mathbb{P}[X \ge \lambda] \le \lambda^{-1}\mathbb{E}[X]$

Chebyshev's inequality (general): for an RV X with $\mathrm{Im}(X)\subseteq A\subseteq \mathbb{R}$ for measurable A, and $\phi:A\to [0,\infty]$ is increasing and measurable, then $\forall \lambda\in A$ with $\phi(\lambda)<\infty$

$$\mathbb{P}[X \geq \lambda] \leq \frac{\mathbb{E}[\phi(X)]}{\phi(\lambda)}$$

Useful ϕ 's: x^2 on $|X - \mathbb{E}[X]|$ gives the standard form, and $e^{\theta x}$ gives $\mathbb{P}[X \geq \lambda] \leq e^{-\lambda \theta} \mathbb{E}[e^{\theta X}]$

WLLN: if $(X_n)_{n\geq 1}$ is a sequence of *iid* random variables with mean μ , variance $\sigma^2<\infty$, then $\frac{1}{n}\sum_{i=1}^n X_i\to \mu$ in probability

Jensen's inequality: for an rv X taking values in an interval I, and $f:I\to\mathbb{R}$ a convex function, then $\mathbb{E}[f(X)]\geq f(\mathbb{E}[X])$

 L^p spaces: see FA1

A collection \mathcal{C} of random variables is **UI/uniformly integrable** \iff

$$\lim_{K \to \infty} \sup_{X \in \mathcal{C}} \mathbb{E}[|X| \mathbf{1}_{\{|X| > K\}}] = 0$$

⇔ both of the following hold:

$$\begin{split} \sup_{X \in \mathcal{C}} \mathbb{E}[|X|] < \infty \\ \sup_{A \in \mathcal{F}: \mathbb{P}(A) \leq \delta} \sup_{X \in \mathcal{C}} \mathbb{E}[|X|\mathbf{1}_A] \to 0 \text{ as } \delta \to 0 \end{split}$$

Useful points:

- this definition works a.s.
- $\{X\}$ is UI $\iff X$ is integrable
- if $\forall X \in \mathcal{C} |X| \leq Y$ for $Y \in \mathcal{L}^1$, then \mathcal{C} is UI.
- we can replace $|X|{\bf 1}_{X>K}$ with $(|X|-K)^+$ (or similar), as $0\leq (|X|-K)^+\leq |X|{\bf 1}_{X>2K}\leq 2(|X|-K)^+$

5.23: if $X_n \to X$ in probability, and are all bounded by $K \in \mathbb{R}$, then $X_n \to X$ in L^1

Vitali's Convergence theorem: if $X_n \to X$ in prob, $X_n \in \mathcal{L}^1$, tfae:

- $\{X_n : n \ge 1\}$ is UI
- $X \in \mathcal{L}^1$ and $\mathbb{E}[|X_n X|] \to 0$
- $X \in \mathcal{L}^1$ and $\mathbb{E}[|X_n|] \to \mathbb{E}[|X|] < \infty$

Thus, $X_n \to X$ in $L^1 \iff X_n \to X$ in probability and $\{X_n : n \ge 1\}$ is UI.

6 Conditional expectation

[Entire chapter is on $(\Omega, \mathcal{F}, \mathbb{P})$]

If X is an integrable RV, and $\mathcal{G}\subseteq\mathcal{F}$ a σ -algebra. Then $\mathbb{E}[X|\mathcal{G}]:=Y$ where Y is integrable, \mathcal{G} -measurable &

$$\forall G \in \mathcal{G}, \ \mathbb{E}[Y\mathbf{1}_G] = \mathbb{E}[X\mathbf{1}_G] \iff \int_G \mathbb{E}[X|\mathcal{G}] \ d\mathbb{P} = \int_G X \ d\mathbb{P} \ \text{(the defining relation)}$$

By theorem 6.3, Y exists, and is unique almost surely (i.e. if Y,Z both follow the conditions above, then Y=Z a.s.)

If we verify the defining relation for X and a candidate Y for $\mathbb{E}[X|\mathcal{G}]$ for $G=\Omega$ and $G\in\mathcal{A}$, where \mathcal{A} is a $\underline{\pi}$ -system generating \mathcal{G} , we have verified it for all $G\in\mathcal{G}$ [because the DCT applied to the defining relation shows that the set of G satisfying it is a λ -system, so then apply $\pi-\lambda$)

For various cases: (where X is an integrable RV)

- $\mathcal{G} = \sigma(B)$, $X = \mathbf{1}_A$ for events A, B: $\mathbb{E}[\mathbf{1}_A | \sigma(B)](\omega) = \mathbb{P}(A | \sigma(B))(\omega) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \mathbf{1}_B(\omega) + \frac{\mathbb{P}(A \cap B^C)}{\mathbb{P}(B^C)} \mathbf{1}_{B^C}(\omega)$
- $\bullet \ \ \mathcal{G} = \sigma(B) \text{, for an event } B \colon \ \ \mathbb{E}[X|\sigma(B)](\omega) = \frac{\mathbb{E}[X\mathbf{1}_B]}{\mathbb{P}(B)} \mathbf{1}_B(\omega) + \frac{\mathbb{E}[X\mathbf{1}_{B^C}]}{\mathbb{P}(B^C)} \mathbf{1}_{B^C}(\omega)$
- $\mathcal{G} = \sigma(B_n: n \geq 1)$, for a sequence of events B_n : $\mathbb{E}[X|\sigma(B_n: n \geq 1)](\omega) = \sum_{n \geq 1} \frac{\mathbb{E}[X\mathbf{1}_{B_n}]}{\mathbb{P}(B_n)} \mathbf{1}_{B_n}(\omega)$
- $\mathcal{G} = \sigma(Z)$ for an RV Z: $\mathbb{E}[X|Z] := \mathbb{E}[X|\sigma(Z)]$.

- this is then defined as the RV Y, which is $\sigma(Z)$ measurable, so a function of Z.
- instead of checking the defining relation, we can check: $\forall A \in \mathscr{B}(\mathbb{R})$, $\mathbb{E}[Y\mathbf{1}_{\{Z \in A\}}] = \mathbb{E}[X\mathbf{1}_{\{Z \in A\}}]$, as $G \in \sigma(Z) = Z(A)$ for A Borel.
- if $\mathcal{G} = \sigma(Z)$, where Z is a discrete RV (taking values $z_1, ...$):
 - then we don't need to check all $A \in \mathcal{B}(\mathbb{R})$, but simply the sets $\{Z = z_i\}$ (as the A's will just be countable unions of such sets)
 - we can now define $Y = \mathbb{E}[X|Z]$ explicitly as:
 - * $Y(\omega) = \mathbb{E}[X|Z](\omega) := \mathbb{E}[X|\sigma(\{Z=z_i\})](\omega) = \sum_{n\geq 1} \frac{\mathbb{E}[X\mathbf{1}_{\{Z=z_i\}}]}{\mathbb{P}(Z=z_i)} \mathbf{1}_{Z=z_i}(\omega)$ where z_i st $Z(\omega) = z_i$ (note the last equality is because z_i is chosen st. $\omega \in \{Z=z_i\}$)
 - checking the defining relation:
 - * $\forall z_i \in \mathbb{R}, \mathbb{E}[Y\mathbf{1}_{\{Z=z_i\}}] = \mathbb{E}\left[\frac{\mathbb{E}[X\mathbf{1}_{\{Z=z_i\}}]}{\mathbb{P}(Z=z_i)}\mathbf{1}_{Z=z_i}^2\right] = \mathbb{E}[X\mathbf{1}_{\{Z=z_i\}}]\mathbb{E}[\mathbf{1}_{Z=z_i}^2] = \mathbb{E}[X\mathbf{1}_{\{Z=z_i\}}]$

Useful and important properties: (6.5)

- $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]] = \mathbb{E}[X]$ (take $G = \Omega \in \mathcal{G}$)
- linear (a.s.)
- $\mathbb{E}[X|\mathcal{G}] = X$ a.s. if X is \mathcal{G} -measurable (satisfies def rel)
- $\mathbb{E}[c|\mathcal{G}] = c$ a.s.
- $\mathbb{E}[X|\{\emptyset,\Omega\}] = \mathbb{E}[X]$
- $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$ a.s. if $\sigma(X), \mathcal{G}$ are independent
- $\bullet \ \, X \leq Y \text{ a.s.} \implies \mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}] \text{ a.s.} \\ \implies |\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}] \text{ a.s.}$

Convergence theorems:

- cMCT: $X_n \geq 0, X_n \uparrow X \implies \mathbb{E}[X_n | \mathcal{G}] \uparrow \mathbb{E}[X | \mathcal{G}]$ a.s.
- cFatou: $X_n \geq 0 \implies \mathbb{E}[\liminf_{n \to \infty} X_n | \mathcal{G}] \leq \liminf_{n \to \infty} \mathbb{E}[X_n | \mathcal{G}]$ a.s.
- cDCT: Y integrable, $|X_n| \le Y, X_n \to X$ a.s $\implies \mathbb{E}[X_n | \mathcal{G}] \to \mathbb{E}[X | \mathcal{G}]$ a.s.

taking out what's known: X,Y rvs with X,Y,XY integrable, Y \mathcal{G} -measurable. Then $\mathbb{E}[XY|\mathcal{G}]=Y\cdot\mathbb{E}[X|\mathcal{G}]$ a.s.

 $\textbf{tower property:}\ \ X\in\mathcal{L}^{1},\mathcal{F}_{1}\subseteq\mathcal{F}_{2}\subseteq\mathcal{F}\ \text{then}\ \ \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_{2}\right]|\mathcal{F}_{1}\right]=\mathbb{E}\left[X|\mathcal{F}_{1}\right]\ \text{a.s.}$

cJensen's: $X \in \mathcal{L}^1, \operatorname{Im}(X) \subseteq I$, an interval, and $f: I \to \mathbb{R}$ is convex, $\mathbb{E}[|f(X)|] < \infty$ then $\mathbb{E}[f(X)|\mathcal{G}] \geq f(\mathbb{E}[X|\mathcal{G}])$ a.s.

For an integrable RV X, a family of σ -algebras $\{\mathcal{F}_{\alpha}: \alpha \in I\}$ where $\forall \alpha \ \mathcal{F}_{\alpha} \subseteq \mathcal{F}$ then $\{X_{\alpha}:=\mathbb{E}[X|\mathcal{F}_{\alpha}]: \alpha \in I\}$ is UI.

Law of total expectation (for calc. use only): $\mathbb{E}[X] = \sum_i \mathbb{E}[X \mathbf{1}_{A_i}] = \sum_i \int X \mathbb{P}(\mathrm{d}\omega \mid A_i) \cdot \mathbb{P}(A_i) \approx \sum_i \mathbb{E}[X \mid A_i] \mathbb{P}[A_i]$ given $\{A_i\}_{i \geq 1}$ forms a finite/countable partition of Ω , where $\mathbb{P}(\cdot \mid A_i)$ is the conditional probability measure defined at (1), and $\mathbb{E}[X \mid A_i]$ is the old conditional expectation.

Orthogonal projection (just for proof of existence of cond exp)

 $\mathrm{Cov}(X,Y) := \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ is the **covariance** of X and Y

X, Y are **uncorrelated** if Cov(X, Y) = 0 (indep \implies uncorrelated)

 $\langle X,Y \rangle := \mathbb{E}[XY]$ is a scalar product for $X,Y \in \mathcal{L}^2$, and X,Y are **orthogonal** if $\langle X,Y \rangle = 0$.

Pythagoras's theorem: if $X,Y\in \mathscr{L}^2$ are othorgonal, then $\|X+Y\|_2^2=\|X\|_2^2+\|Y\|_2^2$

If \mathcal{H} is a complete vector subspace of \mathscr{L}^2 , for any $X \in \mathscr{L}^2$ the infinimum $\inf_{Z \in \mathcal{H}} \|X - Z\|_2$ is achieved by some $Y \in \mathcal{H}$, and (X - Y) is othorgonal to all $Z \in \mathcal{H}$.

Thus, for $\mathbb{E}[X\mid\mathcal{G}]$, $\mathcal{H}:=\mathcal{L}^2(\Omega,\mathcal{G},\mathbb{P})$ is a complete vector space, so we can project X onto \mathcal{H} using the theorem above to get $Y\in\mathcal{H}$ (i,e, Y is \mathcal{G} -measurable), and then Y (by $\mathbf{1}_G$ for $G\in\mathcal{G}$ and cMCT) is a version of $\mathbb{E}[X\mid\mathcal{G}]$.

7 Filtration & stopping times

A **filtration** on $(\Omega, \mathcal{F}, \mathbb{P})$ is a sequence $(\mathcal{F}_n)_{n\geq 0}$ of σ -algebras $\mathcal{F}_n\subseteq \mathcal{F}$ st $\mathcal{F}_n\subseteq \mathcal{F}_{n+1}$ for all n.

 $\mathcal{F}_{\infty}:=\sigma\left(igcup_{n\geq 0}\mathcal{F}_n
ight)$ is the σ -algebra generated by the filtration.

 $(X_n)_{n\geq 0}$ is **adapted** to $(\mathcal{F}_n)_{n\geq 0}$ if $\forall n\ X_n$ is \mathcal{F}_n -measurable. It is **integrable** if each X_n is integrable.

The natural filtration of $(X_n)_{n\geq 0}$ is $\mathcal{F}_n^X = \sigma(X_0, X_1, ..., X_n)$

An RV $\tau:\Omega\to\mathbb{N}\cup\{\infty\}$ is a **stopping time** wrt $(\mathcal{F}_n)_{n\geq 0}$ if $\forall n\ \{\tau=n\}\in\mathcal{F}_n$, or equivalently $\{\tau\leq/\geq/</>n\}\in\mathcal{F}_n$.

A constant is a stopping time, as are the max & min of 2 stopping times.

The hitting time $h_B := \inf\{n \ge 0 : X_n \in B\}$ of an adapted process $(X_n)_{n \ge 0}$ of a Borel set B is a stopping time.

The σ -algebra at time τ (a stopping time) is $\mathcal{F}_{\tau}:=\{A\in\mathcal{F}_{\infty}: \forall n\geq 0\ A\cap \{\tau=n\}\in\mathcal{F}_n\}.$

- (Note that $\tau = n$ can have any inequality operator).
- $\tau \leq \rho \implies \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\rho}$

 X_{τ} is an RV if $\tau < \infty$, defined as $\omega \mapsto (X_{\tau(\omega)})(\omega)$, and is \mathcal{F}_{∞} and \mathcal{F}_{τ} -measurable.

The **stopped process** of $(X_n)_{n\geq 0}$ and τ is $X^{\tau}=(X_{\tau\wedge n})_{n\geq 0}$, which is adapted to the filtrations $(\mathcal{F}_{\tau\wedge n})_{n\geq 0}$ and $(\mathcal{F}_n)_{n\geq 0}$

8 Martingales in discrete time

An integrable, \mathcal{F}_n -adapted stochastic process $(X_n)_{n\geq 0}$ is a

martingale if $\forall n \geq 0 \ \mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$ a.s.

submartingale if $\forall n \geq 0 \ \mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$ a.s. sub = bigger

supermartingale if $\forall n \geq 0 \ \mathbb{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ a.s. super = smaller

Basics:

- $(X_n)_{n\geq 0}$ is a submartingale wrt to $(\mathcal{F}_n)_{n\geq 0}\iff (-X_n)_{n\geq 0}$ is a supermartingale wrt to $(\mathcal{F}_n)_{n\geq 0}$
- $(X_n)_{n\geq 0}$ wrt to $(\mathcal{F}_n)_{n\geq 0}$ is a martingale \iff it is a sub & super martingale.
- $(X_n)_{n\geq 0}$ wrt to $(\mathcal{F}_n)_{n\geq 0}$ is a submartingale $\Longrightarrow (X_n)_{n\geq 0}$ is a submartingale wrt any smaller filtration (incl. \mathcal{F}^X)
- $\mathbb{E}[X_n|\mathcal{F}_m]=X_m$ a.s. if $n\geq m$ where X is a (-/sub/super)martingale [(= $/\geq/\leq$)]
- $\mathbb{E}[X_n] = \mathbb{E}[X_m] = \mathbb{E}[X_0]$ a.s. if $n \ge m$ where X is a (-/sub/super)martingale $[(=/\ge/\le)$ for both = signs]

An integrable sequence $(Y_n)_{n\geq 1}$ is a martingale difference sequence wrt (\mathcal{F}_n) if $\forall n\geq 0$ $\mathbb{E}[Y_{n+1}\mid \mathcal{F}_n]=0$ a.s.

if f is a convex function on \mathbb{R} , and $(X_n)_{n\geq 0}$ is a martingale wrt to $(\mathcal{F}_n)_{n\geq 0}$, $(f(X_n))_{n\geq 0}$ is a submartingale wrt to $(\mathcal{F}_n)_{n\geq 0}$. E.g.: $|X_n|, X_n^2, e^{X_n}e^{-X_n}, \max\{X_n, K\}$

Given a filtration $(\mathcal{F}_n)_{n\geq 0}$, a sequence $(V_n)_{n\geq 1}$ is **predictable** if $\forall n\geq 1$, V_n is \mathcal{F}_{n-1} -measurable

Given a predictable sequence $(V_n)_{n\geq 1}$ and a (-/super/sub)martingale $(X_n)_{n\geq 1}$ on a filtration $(\mathcal{F}_n)_{n\geq 0}$ their **martingale transform** is, which is a martingale wrt $(\mathcal{F}_n)_{n\geq 0}$

$$((V \circ X)_n)_{n \ge 0} := \left(\sum_{k=1}^n V_k (X_k - Y_{k-1})\right)_{n \ge 0}$$

(note the 0th term is either 0 or X_0 , depending)

Doob's Decomposition theorem: given an integrable adapted process $X=(X_n)_{n\geq 0}$ on $(\mathcal{F}_n)_{n\geq 0}$,

- X has a Doob decomposition $X_n = X_0 + M_n + A_n$, where M_n is a martingale and A_n predictable, both on $(\mathcal{F}_n)_{n \geq 0}$, and $M_0 = A_0 = 0$.
- This decomposition is unique in probability i.e. $\mathbb{P}(M_n=M_n',A_n=A_n')$ for all $n\geq 0$

• X is a submartingale $\iff (A_n)_{n\geq 0}$ is an increasing process a.s., and a <u>supermartingale</u> $\iff (A_n)_{n\geq 0}$ is an <u>decreasing process a.s.</u>. Thus, X is a martingale $\iff A_{n+1} = A_n$ a.s.

Given a L^2 -martingale M, i.e. $\mathbb{E}[M_n^2]<\infty$, we can consider the Doob decomposition $M_n^2=M_0^2+N_n+A_n$, where A_n is increasing, as x^2 is a convex function. we call $(\langle M \rangle_n)_{n\geq 0}=(A_n)_{n\geq 0}$

Given a martingale X and a <u>finite</u> stopping time τ , X^{τ} is the **stopped process** of X and τ , and is a martingale wrt $(\mathcal{F}_{\tau \wedge n})_{n \geq 0}$ and $(\mathcal{F}_n)_{n \geq 0}$

Doob's Optional Sampling/Stopping Theorem: given a martingale X wrt $(\mathcal{F}_n)_{n\geq 0}$, and bounded stopping times $\tau\leq \rho$:

- $\mathbb{E}[X_{\rho}] = \mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$
- $\mathbb{E}[X_o|\mathcal{F}_\tau] = X_\tau$ a.s.
- (same for sub/super)

Variants of the above: for a martingale X wrt $(\mathcal{F}_n)_{n\geq 0}$, and τ is a.s. finite (i.e. $\tau<\infty$ except on a null set), then $\mathbb{E}[X_\tau]=\mathbb{E}[X_\tau\mathbf{1}_{\tau<\infty}]=\mathbb{E}[X_0]$ if either:

- 1. $\{X_n : n \ge 0\}$ is UI \iff SOMETHING CHECK LAST SHEET
- 2. $\mathbb{E}[\tau] < \infty$ and $\exists L \in \mathbb{R}$ st $\forall n \ \mathbb{E}[|M_{n+1} M_n| | \mathcal{F}_n] \leq L$ a.s.

Doob's maximal inequality: if $(X_n)_{n\geq 0}$ is a submartingale, $\forall \lambda>0$, $Y_n^\lambda:=(X_n-\lambda)\mathbf{1}_{\{\max_{k\leq n}X_k\geq \lambda\}}$ is a submartingale, and in particular $\lambda \mathbb{P}[\max_{k\leq n}X_n\geq \lambda]\leq \mathbb{E}[X_n\mathbf{1}_{\{\max_{k\leq n}X_k\geq \lambda\}}]\leq \mathbb{E}[|X_n|]$

a corollary: for $p \geq 1, (M_n)_{n \geq 0}$ a martingale with $M_n \in \mathscr{L}^p$, then $\forall N \geq 0, \lambda > 0$ $\mathbb{P}\left[\max_{n \leq N} |M_n| \geq \lambda\right] \leq \frac{\mathbb{E}\left[|M_N|^p\right]}{\lambda^p}$

Doob's L^p inequality: for $p>1, (X_n)_{n\geq 0}$ a non-negative submartingale, $X_n\in \mathscr{L}^p$, $\overline{X}_n:=\max_{k\leq n}X_K$ is in \mathscr{L}^p , and $\mathbb{E}[X_n^p]\leq \mathbb{E}[\max_{k\leq N}X_k^p]\leq \left(\frac{p}{p-1}\right)^p\mathbb{E}[X_n^p]$

if $(X_n)_{n\geq 0}$ is a supermartingale, $\forall \lambda, n\geq 0$ then $\lambda \mathbb{P}(\max_{k\leq n}|X_k|\geq \lambda)\leq \mathbb{E}[X_0]+2\mathbb{E}[X_0]+2\mathbb{E}[X_n^-]$

Upcrossings

For a sequence $x=(x_n)_{n\geq 0}$ of real numbers, fixed a< b, define sequences $(\rho_k)_{k\geq 1}, (\tau_k)_{k\geq 0}$ by:

$$\tau_0 = 0$$

$$\rho_k = \inf\{n \ge \tau_{k-1} : x_n \le a\}$$

$$\tau_k = \inf\{n \ge \rho_k : x_n \ge b\}$$

 $U_n([a,b], \boldsymbol{x}) := \max\{k \geq 0 : \tau_k \leq n\}$ is the number of upcrossings of [a,b] by \boldsymbol{x} by time n, and $U([a,b], \boldsymbol{x}) := \sup_n U_n([a,b], \boldsymbol{x}) = \sup\{k \geq 0 : \tau_k < \infty\}$ is the total number of upcrossings.

Doob's upcrossings lemma: $\boldsymbol{X}=(X_n)_{n\geq 0}$ is a supermartingale, a< b fixed, $\forall n\geq 0$: $\mathbb{E}[(U_n([a,b],\boldsymbol{X})]\leq \frac{\mathbb{E}[(X_n-a)^-]}{b-a}$

a real sequences ${\boldsymbol x}$ converges iff $\forall a,b \in \mathbb{Q}, a < b \ U([a,b],{\boldsymbol x}) < \infty$

 $(X_n)_{n\geq 1}$ is bounded in L^p if $\sup_n \mathbb{E}[|X_n|^p] < \infty$

Doob's Forward convergence theorem: if X is a sub-/super-martingale, and bounded in L^1 , then it converges a.s. to a limit X_∞ (precisely, $\mathbb{P}[X_n \to X_\infty] = 1$), which is integrable.

Thus, if $(X_n)_{n\geq 0}$ is a non-negative supermartingale, then $X_\infty = \lim_{n\to\infty} X_n$ exists a.s. (note no constraints on L^1 , as $\mathbb{E}[|X_n|] = \mathbb{E}[X_n] \leq \mathbb{E}[X_0]$)

UI again:

TFAE, for a martingale $(M_n)_{n\geq 0}$:

- *M* is UI
- $\exists M_{\infty}$, which is \mathcal{F}_{∞} measurable st $M_n \to M_{\infty}$ a.s. and in L^1
- $\exists M_{\infty}$, which is \mathcal{F}_{∞} measurable st $\forall n: M_n = \mathbb{E}[M_{\infty} \mid \mathcal{F}_n]$ a.s.

and if $M_\infty \in \mathscr{L}^p$ for some p>1, then $M_n \to M_\infty$ in \mathscr{L}^p .

If M is a UI martingale, for all (potentially unbounded) stopping times $\tau \leq \rho$ $\mathbb{E}[M_{\rho} \mid \mathcal{F}_{\tau}] = M_{\tau}$ a.s., and $\mathbb{E}[M_{\tau}] = \mathbb{E}[M_{0}]$

If M is a UI martingale, let $M_\infty^* := \max_{n \geq 0} |M_n|$ then $\lambda \mathbb{P}[M_\infty^* \geq \lambda] \leq \mathbb{E}|M_\infty|\mathbf{1}_{\{M_\infty^* \geq \lambda\}}]$ for $\lambda \geq 0$.

Further, if $M_\infty \in \mathscr{L}^p$ for p>1, let q st 1/p+1/q=1 then $\|M_\infty\|_p \leq \|M_\infty^*\|_p \leq q\|M_\infty\|_p$, and $M_n \to M_\infty$ in \mathscr{L}^p .

9 Some applications

Backwards martingales: time is indexed by $I = \{t \in \mathbb{Z} : t \leq 0\}$, and a backwards martingaleis written $(M_{-n})_{n \geq 0}$, and ends at 0.

Given a sequence of σ -algebras $(\mathcal{F}_{-n})_{n\geq 0}$, with $\mathcal{F}_{-n}\subseteq \mathcal{F}$, and $\mathcal{F}_{-k}\subseteq \mathcal{F}_{-k+1}$ for all $k\leq -1$, M_{-n} is a **backwards martingale** if $\forall n:M_{-n}$ is integrable and \mathcal{F}_{-n} measurable, and $\mathbb{E}[M_{-n+1}\mid \mathcal{F}_{-n}]=M_{-n}$ a.s.

Thus, $M_{-n} = \mathbb{E}[M_0 \mid \mathcal{F}_{-n}]$ a.s., and so $(M_{-n})_{n \geq 0}$ is UI.

Doob's Upcrossing lemma automatically holds, as it is actually a result about about finite martingales

And, as $n\to\infty, M_{-n}$ converges a.s. to a random limit $M_{-\infty}.$

 $\mathcal{F}_{-\infty} = \bigcap\limits_{k=0}^{\infty} \mathcal{F}_{-k}$ - note that the $\sigma\text{-algrebras}$ get smaller as k increases

 $M_{-\infty}$ is $\mathcal{F}_{-\infty}$ and \mathcal{F}_{-k} integrable

convergence to $M_{-\infty}=\mathbb{E}[M_0\mid\mathcal{F}_{-\infty}]$ is both a.s. and in $L^1.$

Kolmogorov's Strong LLN: For a sequence $(X_n)_{n\geq 1}$ of IID RVs, each integrable with mean m , set $S_n=\sum_{k=1}^n X_k$, and then $S_n/n\to m$ a.s. and in L^1 as $n\to\infty$.