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Maths

� 1 + x ≤ exp(x) for x ∈ R

�

exp(x) + exp(−x)

2
≤ exp(x2/2) [proof by Taylor expansion]

�

(
n
k

)
∈
[
(n/k)k, (en/k)k

]
� Stirling:

√
2πm(me )

m ≤ m! ≤ 2
√
2πm(me )

m

Problem sheet Qs

S1Q2: test matrix equivalence A = B by Ax = Bx for a random vector x

S1Q5: probability A[i] is smallest in randomly ordered A is 1/|A|

S1Q6: care defining events: P(all even) should be P(6 before 1, 3, 5) which can be
calculated, and equals 1/4 by geometric sum...

S2Q5: remember idea of “Markov on n−X”

S2Q6: Friendship: Jensen + E[#friends of random U ] = E[d2U ] by swapping sums
in u,w st (w, u) ∈ E. strict inequality: 3 friends in a row.

S3Q1: for P(maxi Xi < k) ≤ ε, for Xi = length of longest sequence starting at i,
only consider set of indices i = jk+1, so maxXi < k implies that maxjk+1 Xi < k
also (nothing longer than k, so nothing can stretch across two groups), now these
are independent....

S3Q3: triples of vertices - take care to check whether independent for Chernoff or
not

S2Q4: remember Chernoff bound has µ in both sides of inequality

S2Q5: median of Xi: Chernoff on indicators Xi ≥target val, aim for
∑

Yi ≥ n/2

S4Q2: for stat dists, don’t forget
∑

i π1 = 1 might simplify!

S4Q3: cat + mouse: even-length walk len ≤ 2n: prove by bipartiteness => odd
cycle; expected time to eat: random walk on product G × G, middle wof even

1



length walk is “closest” (w,w) ∈ G × G to (u, v), so E[meet] E[T u to v] ≥
E[T u to v along P ], but E[T ] =

∑
pathsP E[Tp

hitting time to a set = min hitting time to each element <= hitting time to a
specific element

1 Intro

RP class: L if ∃ a poly time deterministic alg A(x, r), for r ∈ {0, 1}p(|x|) (poly p)
st ∀x if x ∈ L, A(x, r) accepts for at least half of the r’s, and if x ̸∈ L A(x, r)
rejects for all r’s.

co-RP: above, but with reject/accept swapped

ZPP: RP ∩ coRP - zero error, will give correct answer, but in expected poly time

BPP: L in bounded-error probabilistic poly time: if ∃ a poly-time det A(x, r) for
r ∈ {0, 1}p(|x|) st ∀x:

� if x ∈ L, A(x, r) accepts for ≥ 3/4 of the r’s

� if x /∈ L, A(x, r) rejects for ≥ 3/4 of the r’s

note constant 3/4 is arbitrary in (1/2, 1).

and RP ⊆ BPP by running the alg twice.

Examples

� string inequality

� min-size cut-set

Techniques

� equivalence of polynomials

� working mod a finite field Fp

2 Linearity of expectation

Expectation is linear

PTAS: ∀ε there is a poly time (in n) that finds a solution within 1− ε of opt (for
maximisation problems)

FPTAS: ∀ε, n PTAS but poly in n and 1/ε.

APX-hard means there is no PTAS

independence, pairwise indep
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geometric dist

Harmonic numbers

Jensen’s inequality: E[f(X)] ≥ f(E[X]) if f convex, X has finite expectation

[proof only for differentiable]

Examples

� max-cut: C ⊆ V cut size is # of edges C → V \C

– alg: put v ∈ C with prob 1/2

� max-3-sat

– same naive as above

� coupon collector

– total time = sum of Xi =time to ith new coupon (doesn’t matter which
one), which is geom

� Random quicksort

Techniques

� splitting µ := E[X] into E[X|X > µ](1 − p) + E[X|X ≤ µ]p where p :=
P[X ≤ µ] and bounding each term, to get a bound on p

� probabilistic method: if the P of simething is > 0 or E > 0 then there must
exist a...

� derandomisation with conditional expectation

– want succinct way of calculating the conditional expectations, possibly
way to simplify out terms that are same on both sides

� turning n RVs into 2n pairwise indep RVs by YS =
⊕

i∈S Xi

3 Tail bounds

Variance, moments

Covariance

pairwise indep: Var[
∑

] =
∑

Var
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Examples

� success of Max-Cut - know E[#cut] - a direct bound on P[#cut ≥ m/4]
useless with Markov, do #not cut instead.

� Coupon collecting:

– E time to all = sum of n (indep) Geom’s

– so Variance with Chebyshev is easy

� Coin flips: # of heads in n - v. standard Chernoff

� Set balancing: minimisemaxi
∑

j Aijbj where bj ∈ {−1, 1}- simple argument
- pick bju.a.r, use simpler Chernoff bound

� Balls and bins: maximum load - one bin at a time, Chernoff on # in bin, then
split E[max load], using fact bounded by n.

� powering BPP: use Chernoff, on Xi = ith trial is correct (which has p ≥ 3/4)

� BPP derandomisation existence: for any n, there is a deterministic version of
A (i.e. an r) st A is correct on all x of length n. Use the probabilistic method
(summing over all x) + powering with k = 24(|x|+ 1) to show there is an r
st (powered)A(x, r) is correct on all x of that length.

Tricks:

� colour a graph’s edges [or vertices] u.a.r in k colours

Techniques

� Union bound: P[
⋃

i Ai] ≤
∑

i P[Ai] [equality if mutually exclusive]

� Markov’s inequality X ≥ 0: P[X ≥ a] ≤ E[X]/a

� Markov with exponential: any X P[X ≥ x] = P[exp(tX) ≥ exp(tx)] ≤
E[exp(tX)]/ exp(tx), optimise over t

� Chebyshev: any X: 3P(|X − E[X]| ≥ a) ≤ Var(X)/a2

� Chernoff: 0-1, indep (may have different Bernoulli probs)Xi,X =
∑

i Xi, µ =
E[X] =

∑
i E[Xi] (so µ is not the mean of an individual term):

for δ > 0: P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

for δ ∈ (0, 1): P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

– [proof by Markov + exp, E[exp(
∑

Xi)] =
∏

E[exp(tXi)] by indep, can
write down E[exp(tXi)], rest is maths bounds
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� Simpler Chernoff bounds: for 0-1 indep, δ ∈ (0, 1):

P[X ≥ (1 + δ)µ] ≤ exp(−µδ2/3)

P[X ≤ (1− δ)µ] ≤ exp(−µδ2/2) ≤ exp(−µδ2/3)

P[|X − µ| ≥ δµ] ≤ 2 exp(−µδ2/3)

� Chernoff for {−1, 1} fair, indep RVs: P[
∑

i Xi ≥ a] ≤ exp(−a2/2n)

� Useful maths bounds:

4 Markov chains (same as before)

Markov chain: set of states Ω, transition matrix P - rows add up to 1

Markov property: Xt depends only on Xt−1

Transition matrix (as time-homogeneous)

irreducible: ∃t ≥ 0 st P t
i,j > 0

hitting times: Hi,j = min{t > 0 : Xt = j | X0 = i}, hi,j := EHi,j is expected
hitting time, rtij = P(Hi,j = t) is prob we hit j at time t

recurrent:
∑

t≥1 r
t
i,i = 1, otherwise transient

positive recurrent if hi,i < ∞, otherwise null recurrent (equiv to P(Hi,i = ∞) = 0)

finite irreducible Markov chains are positive recurrent, and further hi,j < ∞ for all
i, j ∈ Ω

period of a state i: gcd{m > 0 : Pm
i,i > 0}, aperiodic if period = 1

ergodic: aperiodic and positive recurrent

finite + irreducible + aperiodic => ergodic [proof: ε=smallest entry > 0, d=max
distance (finite as irred.), then prob of visit at least εd, write out sum...]

stationary distribution π st π = πP ⇐⇒ ∀i πj =
∑

i πiPi,j (πj based on states
i that can transition to j)

On a finite, irreducible aperiodic Markov chain, there is a unique stationary distri-
bution π st πi = limt→∞ P t

j,i = 1/hi,i (where the limit exists and does not depend
on j)

time-reversible wrt π if πiPi,j = πjPj,i, if this holds then π is a stationary distribu-
tion.

cover time of a graph: maxv∈V E[time to visit all (other) vertices |X0 = v]

Examples

� Randomised 2-SAT

– using that E[hitting time] of random process which is not a Markov chain
is ≥ to that for an actual Markov chain (reflecting,symmetric random
walk on 0...n)
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� reflecting, symmetric random walk on 0...n: hitting time to n is hj = n2− j2

- solve from 0 → n

� Randomised 3-SAT

– similar random walk idea, but bounds not very good - random assignment
is around n/2, chain has preference to 0

– so restart every 3n times [i.e. geometric]

� Random walks on finite, undirected, connected graphs

– d(v) = degree of v

– random walk is aperiodic ⇐⇒ G is not bipartite

– if G is aperiodic=non-bipartite, then the unique stationary dist is [det
bal]

πv =
d(v)

2|E|
=

1

hu,u
(by def)

– if G is connected, non-bipartite, u, v adjacent in G then hu,v < 2|E|
[hu,u = 1

d(u)

∑
v∈N(u)(1 + hv,u), so hv,u <

∑
· · · = 2|E|

– cover time of a non-bipartite connected graph with |V | = n, |E| = m is
≤ 4nm

* spanning tree, do DFS on it - so get a cycle which takes all edges
twice, so cover time ≤ time to cover spanning tree (1 of many
routes) ≤ (2|V | − 2)2|E|

� s− t connectivity: Q: are s and t connected

– Random ans: do a random walk from s for 4n3steps - if reach t, YES,
else NO

– correctness: no false positives, failure is P(Hst > 4n3|s, t connected).
WLOG assume all components of G non-bipartite (if not, add a triangle
to a lone edge), then use cover time 4nm ≤ 2n3 + Markov bound for
prob ≥ 1/2

Techniques

� comparing random process to a Markov chain

� random restarts

– outer loop:

* pick a random assignment

* inner loop: repeat, up to fix number of times, some random-walk
style work - e.g. pick unsat clause, flip literal in it

– idea:

* if the random-walk aspect has a tendency to get worse over time,
then we can reset it.

– analysis
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* bound probability q that inner loop succeeds

* use geometric dist with q to find E number of outer loop runs needed
to succeed

* then use Markov with p = 1/2 to get bound for P[X ≥ 2/q] ≤
1/q
2/q = 1/2

5 Monte Carlo (notes 4.3)

Monte carlo method: random draws, sum over them, apply Chernoff

Randomised approximation scheme (RAS) for f is rand alg A that takes instance
I, error tolerance ε ∈ (0, 1) st ∀I, ε we have

P (|A(I, ε)− f(I)| ≤ εf(I)) ≥ 3/4

anything in (1/2, 1) is equivalent - i.e. an ε − δ approx [Chernoff on Xi = |zi −
f(I)| ≤ εf(I), where we return the median zi = output of ith FPRAS run

A FPRAS is a RAS st that the running time of A is bounded by a polynomial in
|I|and 1/ε.

ε, δ-approximation:

� A takes input I, ε ∈ (0, 1), δ ∈ (0, 1) st ∀I, ε, δ

P (|A(I, ε)− f(I)| ≤ εf(I)) ≥ 1− δ

� and running time of A is bounded by a poly in |I|, 1/ε, log(1/δ)

chernoff for ε, δ-approximation: X1, ..., Xm iid indicator variables, µ = E[Xi] if

m ≥ 3 log(2/δ)
ε2µ then

P

(∣∣∣∣∣ 1m
m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ εµ

)
≤ δ

#P : given Σ is a finite alphabet,

� a counting problem f : Σ∗ → Z≥0 is in FP (functional poly) time if it can be
computed in poly time

� f is in #P if ∃p poly, ϕ, a poly-time checkable predicate st ∀x ∈ Σ∗

f(x) = |{w ∈ Σ∗ : |w| ≤ p(x) ∧ ϕ(x,w) = 1}|

Examples

� DNF counting is FPRAS (using union-of-sets with U= all truth assignemnts,
Hi= assignments that satisfy Ci)
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Techniques

� Union of sets: t subsets Hi of U, n := |U | < ∞, and want to estimate
|H|, H :=

⋃
i Hi.

– Requirements:

* we know |Hi|,
* can sample unif from Hi,

* can check if x ∈ U is in Hi,

* all in time poly in t+ log |U |
– concoct W = {(i, x) : 1 ≤ i ≤ t, x ∈ Hi}, H ′ = {(i, x) ∈ W : (j, x) ̸∈

W for j < i}, |H ′| = |H|, |W | =
∑

i |Hi|
– can sample from W by picking i then x ∈ Hi

– sample from H ′ by sampling from W and checking if in Hjfor j < i

– need m = 3 log(2/δ)t/ε2 samples for an ε, δ-approximation

– so is a FPRAS (δ = 1/4) with large enough m, st m poly in n

6 More sampling

total variation distance between π1, π2 on finite S:

∥π1 − π2∥TV =
1

2

∑
s∈S

|π1(s)− π2(s)|

= max
A⊆S

|π1(A)− π2(A)|

sampling problem: there is a distribution D(x) on Ω(x) for each x ∈ Σ∗

ε-approximate sampler: A that takes x, such that output dist sat ∥A(x) −
D(x)∥TV ≤ ε

PAUS: Poly almost uniform sampler: an ε-approximate sampler if runtime is poly
in |x|, 1/ε

FPAUS: ε-approx sampler, runtime poly in |x|, log 1/ε

self-reproducible: working on set of graphs, can express Ω(G) in terms of Ω(G′)
for G′ smaller than G

Examples

� FPRAS for counting indep sets, if have a PAUS for sampling them: by splitting
into ratios f(Gi)/f(Gi−1) - then PAUS sample elements of f(Gi−1), and
check [poly] if they are independent in Gi (one extra vertex)
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Techniques

7 MCMC and mixing

Metropolis algorithm: (Ω, E) connected, undirected graph, max degree ∆. π a
distribtution on Ω, πx > 0 for all x ∈ Ω. fix C > ∆, π is the unique stat dist of
the chain with transition matrix P :

Px,y =


1
C min

(
1,

πy

πx

)
(x, y) ∈ E

0 x ̸= y, (x, y) ̸∈ E

1−
∑

z:z ̸=x Px,z x = y

[proof by det bal + ergodic finite]

dx,TV (t) := ∥P t
x,· − π∥TV is non-increasing function of t [triangle equality],

dTV (t) := maxx∈Ω dx,TV (t)

Mixing time from state x: τx(ε) := min{t|dx,TV (t) ≤ ε}, for the whole chain:
τ(ε) := maxx∈Ω τx(ε)

rapidly mixing: τ(ε) is poly in log 1/ε and the size of the problem

coupling: a Markov chain (Xt, Yt) on Ω×Ω stXt, Yt are both (individually/marginally)
copies of the original chain, and Xt = Yt =⇒ Xs = Ys for all s ≥ t

[2x completely indep chains would not satisfy this, as could/would diverge, but 2x
indep until meeting would satisfy, but isn’t useful]

Coupling lemma: coupling (Xt, Yt) of a chain Mt with a uniq stat dist: if t :
[0, 1] → Z≥0 is st ∀x, y ∈ Ω

P(Xt(ε) ̸= Yt(ε)|X0 = x, Y0 = y) ≤ ε

then ∥P t(ε)
x,· − P

t(ε)
y,· ∥TV ≤ ε, and the mixing time τ(ε) ≤ t(ε)

[P(Mt(ε) ∈ A|M0 = x) = P(Xt(ε) ∈ A|X0 = x ∧ Y0 = y), since Y0no effect on X

≥ P(Xt(ε) = Yt(ε) ∧ Yt(ε) ∈ A|...), union bound on 1−, use symmetry of Y also a
copy of M . choosing y from stat dist gives mixing time]

integral distance metric: a metric, but distances are integers

nb Markov’s inequality says P(Xt ̸= Yt) = P(d(Xt, Yt) ≥ 1) ≤ E[d(Xt, Yt)]

Coupling contraction lemma: d : Ω× Ω → N be an integral distance on Ω, Mt

has a uniq stat dist, coupling Xt, Yt. if ∃β ∈ (0, 1) ∀x, y ∈ Ω

E[d(X1, Y1)|X0 = x, Y0 = y] ≤ βd(x, y)

then τ(ε) ≤

⌈
log

D

ε

1

log 1
β

⌉
, where D := maxx,y∈Ω d(x, y). [v simple induction]

edge-weighted graph (H, d): connected graph H, with a distance d(x, y) on every
edge x, y in H
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(H, d) is minimal: ∀(x, y) ∈ E d(x, y) is the length of the shortest path from
x → y in H

can convert edge-weighted to minimal by removing edges that are not shortest path
(still connected!)

define integral metric on a minimal edge-weighted graph by shortest dist.

path coupling: a coupling (Xt, Yt) st ∀(x, y) ∈ E E[d(X1, Y1)|(X0, Y0) = (x, y)] ≤
βd(x, y)

path coupling extension lemma: Mt with finite state space Ω. (H, d)minimal
edge-weighted, fix β ∈ (0, 1). If (Xt, Yt) is a path coupling, then there is a coupling
(X̂t, Ŷt) st ∀(x, y) ∈ Ω2 E[d(X̂1, Ŷ1)|(X̂0, Ŷ0) = (x, y)] ≤ βd(x, y)

[v. boring proof, basically define new coupling as probability of all paths between
points]

Path coupling lemma: a path coupling (Xt, Yt) of a chain Mt with a uniq stat

dist, also (H, d): then the mixing time satisfies τ(ε) ≤

⌈
log

D

ε

1

log 1
β

⌉
, where

D := maxx,y∈Ω d(x, y)

[proof: combine above]

Examples

� unif dist on indep sets on G (Ω = I(G)):

– randomly choose vertex, try to move to “xor” sum of Xi⊕{v} if indep,
else stay

– irreducible -> move to empty and back, aperiodic because self-loops

� Hard-core Gibbs measure: use Metropolis, note can skmplify ratios πy/πx

since you know they are adjacent

� card shuffling: Mt: pick a card u.a.r, move to top, stat dist is uniform mixing
is “moving the same card to the top”. mixing is coupon collector

� token ring: indep until meet, so difference is a random walk on 0....n

� binary trees: lazy random walk. Mixing: pick 1 of X,Y u.a.r, move that one
u.a.r, when on same level, make the same direction choices - i.e. levels then
states

– so total time ≤ hr,l +hl,r where r=root, l = a leaf: 1 starting closer to
root -> leaf for level, and back again for state

� colouring of graph by chain that picks v,c, w.p. 0.5 no change, else colour v
with c: coupling: choose same v,c, use contraction lemma

� proper colourings (no touching same-coloured vertices) - chain is random v,c,
change if allowed; use path coupling (extend Ω to all (incl improper) couplings,
as chain will stay proper once proper); H edges is “differ on exactly 1 vertex”,
so distance = Hamming; coupling:
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– choose v, c;

– if there is a neighbour w coloured differently by Xt, Yt:

* if Xt(w) = c and Yt(w) = d, set Xt+1(v) = d, Yt+1(v) = c

* if Xt(w) = d and Yt(w) = c, set Xt+1(v) = c, Yt+1(v) = d

* now v, w are different colours in both Xt+1, Yt+1, so more proper,
but mixing same or worse

– else update v, c in Xt+1, Yt+1

– little bit of prob to work out how distance changes (β = 1− 1
nq )

8 Martingales

Martingale: sequence (Xn)n≥1 st ∀n ≥ 0 E[Xn+1 | X0, ..., Xn] = Xn, and
E[|Xn|] < ∞

(Zn)n≥1 is a martingale wrt a sequence (Xn)n≥1 if ∀n ≥ 0 Zn is a function of
X0, ..., Xn, E[|Zn|] < ∞, E[Zn+1 | X0, ..., Xn] = Zn

E[Xn] = E[X0]

supermartingale: ≤

submartingale: ≥

Doob martingale: sequence X0, ..., Xmw/ bounded exp., Y dep on X0, ..., Xm,
then Zi := E[Y |X0, ..., Xi] is a martingale sequence

simple tower property: E[X] = E[E[X | Y ]] for any rv Y

full tower property: E[X|F1] = E[E[X | F2] | F1], where F1 ⊆ F2 - i.e. F1 has
less information - σ(X1, ..., Xn) ⊆ σ(X1, ..., Xn+1)

stopping time τ for Z0, ... if ∀n τ = n depends only on Z0, ...., Zn

stopped martingale: Zτ = (Zτ∧n)n≥1 := Zτ if τ ≤ n else Zn

optional stopping theorem: (Zn) a martingale wrt (Xn), τ a stopping time wrt
(Xn), and 1 of:

1. τ is bounded

2. ∃c ∀n |Zτ∧n| ≤ c, or

3. E[T ] < ∞ and ∃c ∀n E [|Zτ∧n+1 − Zτ∧n | X1, ..., Xn|] ≤ c

then E[Zτ ] = E[Z0]. [no proof]

Wald’s equation: (Xn)n≥1 non-negative, IID RVs, τ a stopping time for (Xn)n≥1.
If E[|τ |],E[|Xn|] are finite, then E[

∑τ
i=1 Xi] = E[τ ]E[X]. [OST cond #3 on

Zt =
∑t

i=1(Xi − E[X]), note Xi ≥ 0!]

Azuma-Hoeffding: (Xn)n≥0a martingale, |Xi −Xi−1| ≤ ci then ∀λ > 0:
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P(Xn −X0 ≥ λ) ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
P(Xn −X0 ≤ −λ) ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
Proof:

� P (exp(t(Xn −X0) ≥ expλt) ≤ exp(−λt)E[exp(t(Xn−X0)] by Chernoff/Markov
+ exp

� Yi := Xi −Xi−1, E[exp(t(Xn −X0)] = exp[
∏

exp(tYi)] by telescoping

� E
[∏

etYi |X0, .., Xn−1

]
=
(∏n−1

1 etYi

)
E[etYn |X0, ..., Xn−1] by T.O.K.

� nasty mathsy bound on exp tYi ≤ exp
(
(tci)

2/2
)
+ constYi

� induct on n to bound full product with cond exp’s, t = λ/
∑

c2i to minimise
above

McDiarmid’s inequality: if ∃c st |f(x1, ..., xi, ..., xn) − f(x1, ..., x
′
i, ..., xn)| ≤ c

for all i then for indep RVs X1, ..., Xn and λ > 0

P (|f(X1, ..., Xn)− E[f(X1, ..., Xn)| ≥ λ) ≤ 2 exp(−2λ2/(nc2))

[no proof]

Examples

� Gambler’s fortune Zt with each game/step being ’fair’, stopping when it
reaches one of [−b,+a]:

– P[hits a before b]: use OST cond #2 on ZT

– E[T ]: use OST cond #3 on Yt := Z2
t − t, plus P[hits a before b]

– concentration of winnings: if maximum win per bet is bounded (e.g.
by ci = 10), then Az-H gives high-probability bounds in [−k, k], k =
O(

√
n logn)

� balls and bins: Xi: bin i’th ball falls into, Y= # empty at end, Zi := E[Y |
X1, ..., Xi] is a Doob martingale

� v. simple Wald example - E sum of all rolls until the 1st 5 [use E[T ] = 6 by
Geom, E[Xi] = 3.5, none of which depends on 5!]

� Chromatic number: min # of colors χ(G) for proper colouring - use a mar-
tingale of E[χ(G)|G1, ..., Gi], for subgraphs Gi= G∩{1, ..., i}, then Azuma-
Hoeffding - change at most 1

� pattern matching of a pattern in a string X1....Xn, each char selected u.a.r.
- given pattern length k, each new character can be in at most k patterns,
then Az-H

� # of empty bins: n balls into n bins, #empty also Az-H, as each ball can
change # by at most 1
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9 Lovász local lemma

dependency graph of a set of events {A1, ..., An} is a graph G = (V,E) where
V = {A1, ..., An} and Ai is mutually independent of {Aj : (Ai, Aj) ̸∈ E}.

Lovász local lemma: if {A1, ..., An} is a set of “bad” events, p < 1 st:

1. ∀i P(Ai) ≤ p < 1,

2. the maximum degree of the dependency graph is ≤ d,

3. 4dp ≤ 1 [ =⇒ p ≤ 1/(4d) < 1/2 ]

then P(
⋂
AC

i ) > 0 - i.e. the probability of “all good” is > 0, so such an instance
exists

So if ϕ is a k-CNF formula in which every clause shares variables with at most
2k−3 − 1 other clauses, it is satisfiable.

Proof:

define FS =
∧

i∈S Āi for S ⊆ {1, ...n}.

We prove that ∀S P(FS) > 0 and ∀i ∈ [n]\S, P[Ai | FS ] ≤ 2p.

Induct on |S|, base case is straightforward.

Induction: first property straightforward by conditioning; second property by parti-
tioning S into neighbours of Ai, and the rest.
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