Probability and Computing

June 15, 2025

Maths

o 1+z <exp(x)forzeR

. exp(x) + exp(—x)
2

o (i) € [(/R)", (en/k)*]
e Stirling: \/%(%)m <m!< 2\/%(%)711

< exp(2?/2) [proof by Taylor expansion]

Problem sheet Qs

S1Q2: test matrix equivalence A = B by Az = Bx for a random vector x
S1Q5: probability A[i] is smallest in randomly ordered A is 1/|A]

S1Q6: care defining events: P(all even) should be P(6 before 1,3,5) which can be
calculated, and equals 1/4 by geometric sum...

S2Q5: remember idea of “Markov on n — X"

S2Q6: Friendship: Jensen + E[#friends of random U] = E[d%] by swapping sums
in u,w st (w,u) € E. strict inequality: 3 friends in a row.

S3Q1: for P(max; X; < k) < ¢, for X; = length of longest sequence starting at i,
only consider set of indices ¢ = jk+1, so max X; < k implies that max;;,4+1 X; < k
also (nothing longer than k, so nothing can stretch across two groups), now these
are independent....

S3Q3: triples of vertices - take care to check whether independent for Chernoff or
not

S2Q4: remember Chernoff bound has w in both sides of inequality
S2Q5: median of X;: Chernoff on indicators X; >target val, aim for > Y; > n/2
S4Q2: for stat dists, don't forget > . m; = 1 might simplify!

S4Q3: cat + mouse: even-length walk len < 2n: prove by bipartiteness => odd
cycle; expected time to eat: random walk on product G x G, middle wof even



length walk is “closest” (w,w) € G x G to (u,v), so E[meet] E[T utov] >
E[T uto v along P], but E[T] =} _.,..p E[T}

hitting time to a set = min hitting time to each element <= hitting time to a
specific element

1 Intro

RP class: L if 3 a poly time deterministic alg A(z,r), for r € {0,1}*(=D (poly p)
st Vo if ¢ € L, A(z,r) accepts for at least half of the r's, and if x & L A(x,7)
rejects for all r's.

co-RP: above, but with reject/accept swapped
ZPP: RP N coRP - zero error, will give correct answer, but in expected poly time

BPP: L in bounded-error probabilistic poly time: if 3 a poly-time det A(x,r) for
r € {0,1}P02D st va:

o if x € L, A(x,r) accepts for > 3/4 of the r's

o ifx ¢ L, A(xz,r) rejects for > 3/4 of the r's

note constant 3/4 is arbitrary in (1/2,1).
and RP C BPP by running the alg twice.

Examples

e string inequality

e min-size cut-set

Techniques

e equivalence of polynomials

e working mod a finite field IF),

2 Linearity of expectation

Expectation is linear

PTAS: Ve there is a poly time (in n) that finds a solution within 1 — ¢ of opt (for
maximisation problems)

FPTAS: Ve, n PTAS but poly in n and 1/e.
APX-hard means there is no PTAS

independence, pairwise indep



geometric dist

Harmonic numbers

Jensen’s inequality: E[f(X)] > f(E[X]) if f convex, X has finite expectation
[proof only for differentiable]

Examples

e max-cut: C' CV cut size is # of edges C — V\C
— alg: put v € C with prob 1/2

e max-3-sat
— same naive as above

e coupon collector

— total time = sum of X; =time to ith new coupon (doesn’'t matter which
one), which is geom

e Random quicksort

Techniques

o splitting 1 := E[X] into E[X|X > u](1 —p) + E[X|X < p]p where p :=
P[X < p] and bounding each term, to get a bound on p

e probabilistic method: if the IP of simething is > 0 or E > 0 then there must
exist a...

e derandomisation with conditional expectation

— want succinct way of calculating the conditional expectations, possibly
way to simplify out terms that are same on both sides

e turning n RVs into 2" pairwise indep RVs by Y5 = @, ¢ X;

3 Tail bounds

Variance, moments
Covariance

pairwise indep: Var[> ] = > Var



Examples

e success of Max-Cut - know E[#cut] - a direct bound on P[#cut > m/4]

useless with Markov, do #not cut instead.
e Coupon collecting:

— E time to all = sum of n (indep) Geom's

— so Variance with Chebyshev is easy

e Coin flips: # of heads in n - v. standard Chernoff

e Set balancing: minimise max; > _; A;;b; where b; € {—1,1}- simple argument

- pick bju.a.r, use simpler Chernoff bound

e Balls and bins: maximum load - one bin at a time, Chernoff on # in bin, then

split E[max load], using fact bounded by n.

e powering BPP: use Chernoff, on X; = ith trial is correct (which has p > 3/4)

e BPP derandomisation existence: for any n, there is a deterministic version of
A (i.e. an r) st A'is correct on all z of length n. Use the probabilistic method
(summing over all z) 4+ powering with k = 24(]z| + 1) to show there is an r

st (powered)A(x,r) is correct on all = of that length.

Tricks:

e colour a graph's edges [or vertices] u.a.r in k colours

Techniques

e Union bound: PJ; 4;] < >, P[A;] [equality if mutually exclusive]
e Markov's inequality X > 0: P[X > a] < E[X]/a

e Markov with exponential: any X P[X > z] = Plexp(tX) > exp(tz)] <

Elexp(tX)]/ exp(tx), optimise over ¢
Chebyshev: any X: 3P(|X — E[X]| > a) < Var(X)/a?

E[X] =", E[X;] (so p is not the mean of an individual term):

66 .
for § > 0: P[X > (1+6)u] < <(1+5)1+5>

e~? a
for € (0,1): PIX < (1—-d)pu] < ((1_5)15)

Chernoff: 0-1, indep (may have different Bernoulli probs) X;, X =>". X;, =

— [proof by Markov + exp, Elexp(>_ X;)] = [[ E[exp(tX;)] by indep, can

write down Elexp(¢X;)], rest is maths bounds



e Simpler Chernoff bounds: for 0-1 indep, § € (0,1):

PIX > (1+6)u] < exp(—pus®/3)
PIX < (1-6)u] < exp(—pd?/2) < exp(—ud®/3)
P[IX — p| >6p] < 2exp(—pd®/3)

e Chernoff for {—1,1} fair, indep RVs: P[>, X; > a] < exp(—a?/2n)

e Useful maths bounds:

4 Markov chains (same as before)

Markov chain: set of states {2, transition matrix P - rows add up to 1
Markov property: X; depends only on X;_1

Transition matrix (as time-homogeneous)

irreducible: 3t > 0 st Pifj >0

hitting times: H; ; = min{t > 0: X; = j | Xo = i}, h;; := EH, ; is expected
hitting time, 7, = P(H; j =t) is prob we hit j at time ¢

recurrent: thl sz = 1, otherwise transient

positive recurrent if h; ; < 0o, otherwise null recurrent (equiv to P(H; ; = co) = 0)
finite irreducible Markov chains are positive recurrent, and further h; ; < oo for all
i,j €9

period of a state i: ged{m > 0: P} > 0}, aperiodic if period =1

ergodic: aperiodic and positive recurrent

finite + irreducible + aperiodic => ergodic [proof: eé=smallest entry > 0, d=max
distance (finite as irred.), then prob of visit at least ¢, write out sum...]

stationary distribution 7 st 7 = 7P <= Vi w; = >, mP;; (m; based on states
i that can transition to j)

On a finite, irreducible aperiodic Markov chain, there is a unique stationary distri-
bution 7 st m; = lim;_yoo P]‘ii = 1/h;,; (where the limit exists and does not depend
on j)
time-reversible wrt 7 if m;P; ; = 7;P; ;, if this holds then 7 is a stationary distribu-
tion.

cover time of a graph: max,cy E[time to visit all (other) vertices | Xy = v]

Examples

e Randomised 2-SAT

— using that E[hitting time] of random process which is not a Markov chain
is > to that for an actual Markov chain (reflecting,symmetric random
walk on 0...n)



o reflecting, symmetric random walk on 0...n: hitting time to n is h; = n? — 52
- solve from 0 —» n

e Randomised 3-SAT
— similar random walk idea, but bounds not very good - random assignment

is around n/2, chain has preference to 0

— so restart every 3n times [i.e. geometric]
e Random walks on finite, undirected, connected graphs

— d(v) = degree of v
— random walk is aperiodic <= (G is not bipartite

— if G is aperiodic=non-bipartite, then the unique stationary dist is [det
bal]
d(v) 1
" TE] T huw

(by def)

— if G is connected, non-bipartite, u,v adjacent in G then h,, < 2|E|
[h“7u = ﬁ ZvEN(u)(l + hv,u)v SO hv,u < Z e = 2‘E|

— cover time of a non-bipartite connected graph with |V| =n,|E| =m is
< 4nm

* spanning tree, do DFS on it - so get a cycle which takes all edges
twice, so cover time < time to cover spanning tree (1 of many

routes) < (2|V| — 2)2|E]
e s —t connectivity: Q: are s and ¢ connected

— Random ans: do a random walk from s for 4n3steps - if reach ¢, YES,
else NO

— correctness: no false positives, failure is P(Hy; > 4n3|s,t connected).
WLOG assume all components of G non-bipartite (if not, add a triangle
to a lone edge), then use cover time 4nm < 2n% + Markov bound for
prob > 1/2

Techniques

e comparing random process to a Markov chain
e random restarts

— outer loop:

* pick a random assignment

* inner loop: repeat, up to fix number of times, some random-walk
style work - e.g. pick unsat clause, flip literal in it

— idea:

* if the random-walk aspect has a tendency to get worse over time,
then we can reset it.

— analysis



* bound probability ¢ that inner loop succeeds

* use geometric dist with ¢ to find E number of outer loop runs needed
to succeed

* then use Markov with p = 1/2 to get bound for P[X > 2/q] <

1/a _
Ya—1/2

5 Monte Carlo (notes 4.3)

Monte carlo method: random draws, sum over them, apply Chernoff

Randomised approximation scheme (RAS) for f is rand alg A that takes instance
1, error tolerance € € (0,1) st VI, e we have

P (A1) = f(D)] < ef(I)) = 3/4

anything in (1/2,1) is equivalent - i.e. an ¢ — § approx [Chernoff on X; = |z —
f(D)| < ef(I), where we return the median z; = output of ith FPRAS run

A FPRAS is a RAS st that the running time of A is bounded by a polynomial in
[Iland 1/e.

€, 0-approximation:

o A takes input I, € (0,1),6 € (0,1) st VI,¢,0

P(AMLe) = f(D <ef(l) 21-6
e and running time of A is bounded by a poly in |I|,1/e,log(1/d)

chernoff for e, §-approximation: X, ..., X,, iid indicator variables, u = E[X|] if
m > 310527(,2/6) then

1 m
P(fa s

#P: given X is a finite alphabet,

Zw) <9

e a counting problem f : X* — Zxg is in FP (functional poly) time if it can be
computed in poly time

e fisin #P if dp poly, ¢, a poly-time checkable predicate st Va € ¥*

flz) ={w e X" : |Jw| < plx) A ¢z, w) =1}

Examples

e DNF counting is FPRAS (using union-of-sets with U= all truth assignemnts,
H;= assignments that satisfy C;)



Techniques

e Union of sets: ¢ subsets H; of U,n := |U| < oo, and want to estimate
|H|,H =, H,.

— Requirements:

we know |H;|,

can sample unif from H;,
can check if x € U is in H;,

*
*
*
* all in time poly in ¢ + log |U|

concoct W = {(i,z) : 1 <i<t,x € H;}, H ={(i,z) e W: (j,z) &
W for j < i}, |H'| =|H|, |W| =, |Hi

can sample from W by picking ¢ then z € H;

1

sample from H' by sampling from W and checking if in Hjfor j < i

need m = 3log(2/d)t/e? samples for an &, 5-approximation

so is a FPRAS (§ = 1/4) with large enough m, st m poly in n

6 More sampling

total variation distance between 71, 7w on finite S:

Im ~ mally = 5 3 Ima(s) — ma(s)

ses

= max i (4) — ma(4)

sampling problem: there is a distribution D(x) on (z) for each z € X*

e-approximate sampler: A that takes z, such that output dist sat ||A(x) —
D(z)|rv <e

PAUS: Poly almost uniform sampler: an e-approximate sampler if runtime is poly
in |z|,1/e

FPAUS: c-approx sampler, runtime poly in |z],log1/e

self-reproducible: working on set of graphs, can express (G) in terms of Q(G')
for G’ smaller than G

Examples
e FPRAS for counting indep sets, if have a PAUS for sampling them: by splitting

into ratios f(G;)/f(G;—1) - then PAUS sample elements of f(G;_1), and
check [poly] if they are independent in G; (one extra vertex)



Techniques

7 MCMC and mixing

Metropolis algorithm: (2, E') connected, undirected graph, max degree A. 7 a
distribtution on ©, m, > 0 for all x € Q. fix C > A, 7 is the unique stat dist of
the chain with transition matrix P:

min (1, :—i) (z,y) € E
r#y, (v,y) ¢ E
- Zz:z#x Pwvz r=yYy

P, =

= S ak-

[proof by det bal + ergodic finite]
dy7v(t) := || P} — ||y is non-increasing function of ¢ [triangle equality],
drv (t) == maxzeq dy v (1)

Mixing time from state x: 7,(¢) := min{¢|d; v (¢t) < €}, for the whole chain:
7(€) := max,eq 72 ()

rapidly mixing: 7(¢) is poly in log1/e and the size of the problem

coupling: a Markov chain (X3, Y;) on Qx€Q st Xy, Y; are both (individually/marginally)
copies of the original chain, and X; =Y; = X, =Y, forall s > ¢

[2x completely indep chains would not satisfy this, as could/would diverge, but 2x
indep until meeting would satisfy, but isn't useful]

Coupling lemma: coupling (X;,Y;) of a chain M; with a uniq stat dist: if ¢ :
[O, 1] — L is st Vr,y € Q)

P(Xie) # Yie)| Xo=2,Yo=y) <¢

then || PLE) — PI) |7y < e, and the mixing time 7(c) < t(¢)
[P(Myy € A|My = x) = P(Xy(o) € A|Xo = 2 A Yy = y), since Ypno effect on X

> P(Xy(e) = Yi(e) A Yy(e) € AJ...), union bound on 1—, use symmetry of Y also a
copy of M. choosing y from stat dist gives mixing time]

integral distance metric: a metric, but distances are integers
nb Markov's inequality says P(X; #Y;) = P(d(X4,Y:) > 1) < E[d(Xy,Y?)]

Coupling contraction lemma: d: ) x Q — N be an integral distance on €2, M,
has a uniq stat dist, coupling X;,Y;. if 38 € (0,1) Vz,y €

E[d(X1,Y1)[Xo = z,Yy = y] < Bd(z,y)
D 1 . . .
then 7(¢) < |log Tloa I where D := max, yecq d(x,y). [v simple induction]
€ log 5

edge-weighted graph (H,d): connected graph H, with a distance d(x,y) on every
edge x,y in H



(H,d) is minimal: V(z,y) € E d(z,y) is the length of the shortest path from
r—yin H

can convert edge-weighted to minimal by removing edges that are not shortest path
(still connected!)

define integral metric on a minimal edge-weighted graph by shortest dist.

path coupling: a coupling (X;,Y;) stV(z,y) € EE[d(X1,Y1)|(Xo,Y0) = (z,y)] <
Bd(z,y)

path coupling extension lemma: M, with finite state space Q. (H,d)minimal
edge-weighted, fix 8 € (0,1). If (Xt,Y?) is a path coupling, then there is a coupling
(X¢, Y2) st V(z,y) € Q% E[d(X1, Y1)[(Xo, Y0) = (z,y)] < Bd(z,y)

[v. boring proof, basically define new coupling as probability of all paths between
points]

Path coupling lemma: a path coupling (X;,Y;) of a chain M; with a uniq stat

D 1
dist, also (H,d): then the mixing time satisfies 7(g) < ’Vlogll-‘, where
E =
B

D :=max, yeq d(z,y)

[proof: combine above]

Examples

e unif dist on indep sets on G (2 =Z(@G)):

— randomly choose vertex, try to move to “xor” sum of X; @ {v} if indep,
else stay

— irreducible -> move to empty and back, aperiodic because self-loops

Hard-core Gibbs measure: use Metropolis, note can skmplify ratios /7,
since you know they are adjacent

e card shuffling: M;: pick a card u.a.r, move to top, stat dist is uniform mixing
is “moving the same card to the top”. mixing is coupon collector

e token ring: indep until meet, so difference is a random walk on 0....n

e binary trees: lazy random walk. Mixing: pick 1 of XY u.a.r, move that one
u.a.r, when on same level, make the same direction choices - i.e. levels then
states

— so total time < h,; + h;, where r=root, [ = a leaf: 1 starting closer to
root -> leaf for level, and back again for state

e colouring of graph by chain that picks v,c, w.p. 0.5 no change, else colour v
with c: coupling: choose same v,c, use contraction lemma

e proper colourings (no touching same-coloured vertices) - chain is random v,c,
change if allowed; use path coupling (extend 2 to all (incl improper) couplings,
as chain will stay proper once proper); H edges is “differ on exactly 1 vertex”,
so distance = Hamming; coupling:

10



choose v, ¢;

if there is a neighbour w coloured differently by X3, Y;:
* if Xi(w) =cand YVi(w) =d, set Xi11(v) =d,Yi11(v) =c
* if Xi(w) =d and Yy (w) =¢, set Xiy1(v) =¢,Yep1(v) =d
* now v, w are different colours in both X;1,Y;,1, so more proper,
but mixing same or worse

else update v,c in Xyy1,Yiq1

little bit of prob to work out how distance changes (8 =1 — niq)

8 Martingales

Martingale: sequence (X,)n,>1 st Vn > 0 E[X,41 | Xo,...,Xs] = X, and
E[| X,|] < o0

(Zy)n>1 is a martingale wrt a sequence (X,,),>1 if Y¥n > 0 Z, is a function of

X0, oo X, E[|Z0]] < 00, B[ Zng1 | Xos oy Xoi]
E[X,] = E[X,]

>1
Zn

supermartingale: <
submartingale: >

Doob martingale: sequence X, ..., X;,w/ bounded exp., Y dep on Xy, ..., X,
then Z; := E[Y| Xy, ..., X;] is a martingale sequence

simple tower property: E[X] = E[E[X | Y]] for any rv YV

full tower property: E[X|F;] = E[E[X | F2] | Fi], where Fy C F, - i.e. Fi has
less information - (X1, ..., X;,) C o(X1, ..., Xnt1)

stopping time 7 for Zj, ... if Yn 7 = n depends only on Z, ...., Z,
stopped martingale: Z7 = (Z pp)n>1 1= Z; if T <nelse Z,
optional stopping theorem: (Z,) a martingale wrt (X,,), 7 a stopping time wrt

(Xn), and 1 of:

1. 7 is bounded
2. deVn | Zopn| <c or

3. E[T] < oo and e Vn E[|Zrant1 — Zran | X1, Xul] < ¢

then E[Z,] = E[Z,]. [no proof]

Wald’s equation: (X,,),>1 non-negative, IID RVs, 7 a stopping time for (X,,)n>1.
If E[|7|],E[|X,|] are finite, then E[>°7_, X;] = E[r]E[X]. [OST cond #3 on
Zy = Zﬁzl(Xi —E[X]), note X; > 0]

Azuma-Hoeffding: (X,,),>0a martingale, | X; — X;_1| < ¢; then VA > 0:

11



)\2
i=1"1

2
]P)(Xn — XO S —)\) S exp (—22:202)
i=1"1

Proof:

o P(exp(t(X,, — Xo) > exp At) < exp(—At)E[exp(¢(X,—Xo)] by Chernoff/Markov
+ exp

o V=X, — X;_1, Elexp(t(X,, — Xo)] = exp|[[] exp(tY;)] by telescoping
E [[Te™ | X0, Xa-1] = (IT} " e ) Be™

nasty mathsy bound on exptY; < exp ((tc;)?/2) + constY;

Xo, ..., Xn_1] by T.0.K.

induct on n to bound full product with cond exp'’s, t = A/ Y ¢? to minimise
above

McDiarmid’s inequality: if Jc st |f(z1,..., Zi5 o0y Tn) — [(X1, 000, &, oy p)| < €
for all 7 then for indep RVs X1, ..., X,, and A >0

P(|f(X1,.., Xn) — E[f(X1,..., X)| > A) < 2exp(—22%/(nc?))

[no proof]

Examples

e Gambler's fortune Z; with each game/step being 'fair’, stopping when it
reaches one of [—b, +a:

Plhits a before b]: use OST cond #2 on Zr

E[T]: use OST cond #3 on Y; := Z? — t, plus P|hits a before b]

— concentration of winnings: if maximum win per bet is bounded (e.g.
by ¢; = 10), then Az-H gives high-probability bounds in [—k, k], k =
O(v/nlogn)

e balls and bins: X;: bin i'th ball falls into, Y= # empty at end, Z; := E[Y |
X1, ..., X;] is a Doob martingale

e v. simple Wald example - E sum of all rolls until the 1st 5 [use E[T] = 6 by
Geom, E[X;] = 3.5, none of which depends on 5!]

e Chromatic number: min # of colors x(G) for proper colouring - use a mar-
tingale of E[x(G)|G1, ..., G;], for subgraphs G;= GN{1,...,i}, then Azuma-
Hoeffding - change at most 1

e pattern matching of a pattern in a string X;....X,,, each char selected u.a.r.
- given pattern length k, each new character can be in at most k patterns,
then Az-H

e # of empty bins: n balls into n bins, #empty also Az-H, as each ball can
change # by at most 1

12



9 Lovasz local lemma
dependency graph of a set of events {41,..., A, } is a graph G = (V, E) where
V ={A,...,A,} and A, is mutually independent of {4; : (4;,A;) € E}.

Lovasz local lemma: if {A;,..., A, } is a set of “bad” events, p < 1 st:
1. Vi P(4;) <p<1,

2. the maximum degree of the dependency graph is < d,

3.4dp<1[= p<1/(4d) < 1/2]

then P(N AY) > 0 - i.e. the probability of “all good” is > 0, so such an instance
exists

So if ¢ is a k-CNF formula in which every clause shares variables with at most

2k=3 _ 1 other clauses, it is satisfiable.
Proof:
define Fig = \,cg A; for S C {1,..n}.

We prove that VS P(Fgs) > 0 and Vi € [n]\S, P[4; | Fs] < 2p.
Induct on |S|, base case is straightforward.

Induction: first property straightforward by conditioning; second property by parti-
tioning S into neighbours of A;, and the rest.

13
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