
Machine Learning

February 5, 2023

for whatever reason, we just ignore that pdf’s are density functions.

Terms/data

Options on how to encode categorical data

� number them 0..𝐶

� one-hot encoding - have 𝐶 inputs, where exactly 1 is 1, all others 0

� encode in binary

Considerations:

� encoding classes as numbers/in binary gives a structure to the classes that
may not be there, and thus may confuse the model.

� one-hot is ideal in this sense, but it increase the size of the model a lot if
there are many classes.

� if the model is sufficiently powerful, even with decimal/binary, it can learn
past this issue.

Important functions

Softmax: softmax(𝒙) = exp(𝒙)
∥ exp(𝒙)∥1

Sigmoid: sigmoid(𝑡) := 1

1 + 𝑒−𝑡 maps R to [0, 1]

Alternatives: sigmoid′ (𝑡) := 2

1 + 𝑒−𝑡 − 1 maps R to [−1, 1]

1

1 Linear Regression

input: a vector 𝒙 ∈ R𝐷, where 𝐷 is the data dimension

output: 𝑦 ∈ R

model params: 𝒘 ∈ R𝐷

training data: 𝑁 observations, ⟨(𝒙𝑖, 𝑦𝑖)⟩𝑁𝑖=1
linear model: 𝑦 = 𝑤0 + 𝑥1𝑤1 + · · · + 𝑥𝑑𝑤𝑑 + 𝜀 - note 𝑤0 is called the bias/intercept,

and 𝜀 the noise/uncertainty

easier model: introduce 𝑥0 = 1 for all data points, so that 𝑦 = 𝒘 · 𝒙 + 𝜀 - now the
data is 𝐷 + 1 dimensional.

prediction: �̂�(𝑥) = 𝒘 · 𝒙 - no error term here

loss function: varies greatly, generally called L

� e.g. absolute loss: | �̂� − 𝑦 |, or squared loss: (�̂� − 𝑦)2

residual: the difference between prediction and actual data

In matrix notation:

The data is represented as a 𝑁×(𝐷+1) matrix 𝑿 (where 𝑁 is the no. of datapoints),
with each row being one of the 𝒙 vectors, including 𝒙0 at the start.

The known output is 𝒚, a 𝑁 × 1 matrix, and similarly �̂� is the predicted output.

𝒘 is the same as above.

Then �̂� = 𝑿𝒘.

General process to solve for parameters

Given a loss function, how to solve for the params:

� find the partial derivatives wrt to each param

� solve the system of equations when you set each partial derivative to 0

� this can turn out to be an expression in the covariance, variance and means
of 𝑥 and 𝑦

2

Least squares regression

Loss function:

L(𝒘) = 1

2𝑁

𝑁∑︁
𝑖=1

(𝒙𝑇𝑖 𝒘−𝑦𝑖)2 =
1

2𝑁
(𝑿𝒘−𝒚)𝑇 (𝑿𝒘−𝒚) = 1

2𝑁
(𝒘𝑇 (𝑿𝑇𝑿)𝒘−2·𝒚𝑇𝑿𝒘+𝒚𝑇 𝒚)

(note the 2 there is to simplify the derivative - has no effect on the solutions)

Which we can then differentiate, using techniques from CM:

(note 𝑿𝑇𝑿 is symmetric)

𝑑L
𝑑𝒘

(𝒘) = 1

2𝑁

(
2𝑿𝑇𝑿𝒘 − 2

(
𝒚𝑇𝑿

)𝑇)
= 𝑿𝑇𝑿𝒘 − 𝑿𝑇 𝒚

And solve by setting = 0: (assuming the inverse exists)

𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇 𝒚

Thus our predictions are

�̂� = 𝑿𝒘 = 𝑿 (𝑿𝑇𝑿)−1𝑿𝑇 𝒚

note that 𝑿 (𝑿𝑇𝑿)−1𝑿𝑇 is often called the hat matrix.

Computational complexity: 𝑂(𝐷2𝑁) is a good bound, assuming 𝐷 < 𝑁 (nb this is
because the cost 𝑂(𝐷3) of inverting 𝑿𝑇𝑿 is(𝑂) less than the 𝑂(𝐷2𝑁)
for doing the matrix multiplications). (also, swap numbers if 𝑁 < 𝐷)

When is 𝑿𝑇𝑿 invertible?

rank(𝑿𝑇𝑿) = rank(𝑿) ≤ min{𝐷 + 1, 𝑁}, so it is only invertible if rank(𝑿) = 𝐷 + 1

Note that if we use one-hot encoding, we are introducing dependencies in the
columns of 𝑋 (as the sum of those columns is always = 1) and thus reducing the
rank, making 𝑿𝑇𝑿 non-invertible. We can solve this by dropping 1 class (e.g.
sunday out of the days of the week) from our data, since we can recreate it easily.

Issues:

outliers have a large effect when using least square loss - to fix, either exclude
outliers (somehow), or use absolute loss (not differentiable, so can’t do the process
above):

3

1.1 Perceptrons

A perceptron is a linear model as desc. above composed with the sign operation.

2 Maximum likelihood

Cov(𝑋, 𝑌) = E[𝑋𝑌] − E[𝑋]E[𝑌]

corr(𝑋, 𝑌) = Cov(𝑋,𝑌)√
var(𝑋)var(𝑌)

The covariance of a vector 𝒙 is the matrix Cov(𝒙), which has 𝑖, 𝑗’th entry
{
var(𝑥𝑖) 𝑖 = 𝑗

Cov(𝑥𝑖, 𝑥 𝑗) 𝑖 ≠ 𝑗

Gaussian & multivariate

Laplace distribution:

Lap(𝑥 |𝜇, 𝑏) = 1

2𝑏
exp(− |𝑥 − 𝜇|

𝑏
)

Mean: 𝜇, variance: 2𝑏2

2.1 Maximum likelihood principle

Suppose we have a set of data, and have chosen a model with parameters 𝜃.

We make the universal assumption that our data points (observations) are indepen-
dent. Let 𝑝 = 𝑝(D|𝜃) be the probability of observing all the data given 𝜃 under this

4

model , and 𝑝𝑖 = 𝑝(D𝑖 |𝜃) for observing the 𝑖th datapoint. THen by independence,
𝑝 =

∏
𝑖 𝑝𝑖, and so we introduce the negative log likelihood,

𝑁𝐿𝐿 = − log 𝑝 = −∑
log 𝑝𝑖

which is much easier to work with.

The aim is to choose the parameters 𝜃 such that 𝑝 is maximised, which is equivalent
to minimising the 𝑁𝐿𝐿.

Then, once we’ve found 𝜃∗, we just run new data through the model.

2.1.1 MLE for Linear Regression

If we have the same setup as LR, and model the noise as N(0, 𝜎2), then 𝑦 ∼
𝒘𝑇𝒙 + N(0, 𝜎2) ∼ N (𝒘𝑇𝒙, 𝜎2), so 𝑝𝑖 = 𝑝(𝑦𝑖 |𝒙𝑖,𝒘, 𝜎), and we use the pdf of the
Gaussian

and thus the probability that we observe the labelled data (𝒙1, 𝑦1), ..., (𝒙𝑁 , 𝑦𝑁) given
distribution 𝑝 and parameters 𝜃 is

𝑝(𝑥1, ..., 𝑥𝑁 |𝜃) =
𝑁∏
𝑖=1

𝑝(𝑥𝑖 |𝜃)

Then the 𝑁𝐿𝐿 comes out to be the same as L above, except a constant and a
multiplicative factor, so we know our estimates above are MLEs.

2.2 MLE for Laplace LR

We apply the MLE process to LR, but with the absolute loss, which turns out to be
2.1.1 again, but with the Laplace distribution instead of the Gaussian. There is no
closed-form solution for the parameter 𝜇.

3 Basis expansion

with polynomials

A 𝑑-dimension basis expansion is the map 𝜙𝑑 : R → R𝑑+1 given by 𝜙𝑑 (𝑥) =[
1 𝑥 ... 𝑥𝑑

]𝑇
.

We extend this to 𝜙𝑑 : R
𝐷 → R... where 𝜙𝑑 (𝒙) is a list of the terms in (𝒙1+· · ·+𝑥𝐷)𝑑

(so a long vector - note we ignore the multiplicative factors)

If we “preprocess” our data by converting ⟨(𝒙𝑖, 𝑦𝑖)⟩𝑁𝑖=1 to ⟨(𝜙𝑑 (𝒙𝑖), 𝑦𝑖)⟩𝑁𝑖=1, then with
a linear model such as LR, we can actually model polynomial relationships.

This is powerful, but it can lead to overfitting, because a 𝑑 = 𝑁 − 1 expansion will
ensure there is a poly that perfectly fits our data, but is most likely useless. Also,
it geenrates a lot more parameters, which can lead to very slow learning.

complexity: e.g. comparing degree 2 basis expansion to a kernel like 𝜅(𝒙, 𝒚) =

(1 + 𝑥⊥ 𝑦)2:

5

� basis expansion: 𝐷2 time

� kernel: ≈ 𝐷 time, as scalar mult is basically free.

with kernels

A kernel is a function 𝜅(𝑥, 𝑥′) ∈ R that maps two data points to a real number.
it is typically symmetric and non-negative, so we can consider it a “distance” or
measure of similarity between the two points.

A radial basis function kernel with parameter 𝛾 is 𝜅(𝒙, 𝒙′) = exp(−𝛾∥𝒙 − 𝒙′∥2)

(separately) a radial basis function is a a function 𝜙(𝒙) = exp(−𝛾∥𝒙− 𝝁∥2) for some
centre 𝜇. This is a completely valid expansion in of itself

Then the basis expansion wrt to 𝜅 is 𝜙𝜅 (𝒙) =
[
1 𝜅(𝝁1, 𝒙) ... 𝜅(𝝁𝑴 ,𝒙)

]𝑇
for 𝑀

centres 𝝁1, ..., 𝝁𝑀 , which is an approximation, as the true expansion is infinite.

Choosing centres and 𝛾

Centres: can choose the data points themselves, not really on the course

𝛾:

small then we probably get underfitting, as all the points have roughly 𝜅(𝝁,𝒙) ≈ 1
and so get similar feature values, so all data is very similar and thus we get
underfitting

large, 𝜅(𝝁,𝒙) ≈ 0 for most points, unless they are v. close to 𝝁, and this likely
leads to overfitting: for existing points, they are differentiated by the kernel,
but new points. , as the kernel measures closeness???

4 Learning curves and over/underfitting

A model is unbiased if E[𝑦− 𝑦] = 0 for any new data points - the expected difference
between actual and predicted is 0. It is otherwise biased.

A model is overfitting = high variance when it corresponds too closely to previ-
ously seen data, and thus doesn’t make future predictions so well - precisely, when
we fit it to different data set, we get wildly different models.

A model is underfitting = high bias when it does not capture the actual structure
of the data, so predictions will be inherently wrong - i.e. E[𝑦 − 𝑦] ≠ 0

Seeing this on a learning curve:

� two curves: one training error, one validation error, on a error against #
training samples graph

� overfitting:

6

– training error continues to decrease - i.e. matching training data even
better, but validation error may increase

� underfitting:

– neither error decreases fully - they may still decrease and approach each
other, but the floor will be much higher

� good???

– both converge, and at a low floor reflecting the natural noise in the data.

5 Regularisation & Model Selection

The idea: to avoid overfitting, we penalise weights being large, so the model only
selects weights if they’re actually helping the prediction.

5.1 Ridge regression

L𝑟𝑖𝑑𝑔𝑒 (𝒘) = (𝑿𝒘 − 𝒚)𝑇 (𝑿𝒘 − 𝒚) + 𝜆
𝐷∑︁
𝑖=1

𝑤2
𝑖 = ∥𝑿𝒘 − 𝒚∥22 + 𝜆∥𝒘∥22

Where in the norm of 𝒘 we ignore 𝒘0. k

Standardisation, as desc. below, is important for ridge regression, as it ensures the
weights are treated equally.

The optimal weights are𝒘𝑟𝑖𝑑𝑔𝑒 = (𝑿𝑇𝑿+𝜆𝑰𝐷)−1𝑿𝑇 𝑦, via the standard differentiation
method.

Same runtime as Least squares, 𝑂(𝐷2𝑁)

RR as an LP

We can also consider it as the following LP

minimise: ∥𝑿𝒘 − 𝒚∥2

st∥𝒘∥2 ≤ 𝑅

Where 𝑅 is chosen somehow.

7

5.2 Lasso

L𝑟𝑖𝑑𝑔𝑒 (𝒘) = (𝑿𝒘 − 𝒚)𝑇 (𝑿𝒘 − 𝒚) + 𝜆
𝐷∑︁
𝑖=1

𝑤𝑖 = ∥𝑿𝒘 − 𝒚∥22 + 𝜆∥𝒘∥

Where in the 1-norm of 𝒘 we ignore 𝒘0.

Standardisation, as desc. below, is important for ridge regression, as it ensures the
weights are treated equally. There is no closed form, so considering the LP again
makes sense:

minimise: ∥𝑿𝒘 − 𝒚∥2

st∥𝒘∥1 ≤ 𝑅

Where 𝑅 is chosen somehow.

∥𝒘∥1 is not differentiable, so contour curves of it have corners.

5.3 Standardisation

For each feature (separately), we can standardise the training data to have mean
0 and variance 1. Obviously, we also apply the same transformation to the testing
data.

Note we can also standardise the output variables.

MORE!!!!!!!!!!!!!!!!!!!!!!!!!!!!

6 Model selection

A hyperparameter is a parameter of the model that is not trained.

The validation set is a subset of the training set that is used separately for assessing
hyperparameter performance. To test some hyperparameters, we train the model
on the training set less the validation set - the new training set, and then run the
model on the validation set to get an accuracy figure. we then chooose the best
hyperparameters according to whichever did best on the validation set.

𝐾-fold cross validation is where we divide the training set into 𝐾 parts = folds, and
use 𝐾 − 1 of them as the training set, and the last as the validation set. We repeat
this 𝐾 times, using each fold as the validation set once, and average over all. Thus,
we arrive at an accuracy/error for the given hyperparameters.

LOOCV is 𝑁-fold CV, where 𝑁 is the number of data points.

feature selection: when we have lots of features, it can be worth working out which
are useful before training (even with lasso/ridge), to make our model smaller. Two
approaches:

forward search:

8

we build up a set 𝐹 of selected features, initially ∅.
While it is not full, for each currently unselected feature 𝑖 , train & test the model
on features 𝐹 ∪ {𝑖}. Set 𝐹 := 𝐹 ∪ {𝑖} for whichever 𝑖 gave the best results.

Out of all the 𝐹’s generate, return whichever gave the best results.

filter feature selection:

calculate the mutual informsation(below) between each feature and the output, and
choose the best according to this.

𝐼 (𝑋, 𝑌) = ∑
𝑥

∑
𝑦 𝑝(𝑋 = 𝑥, 𝑌 = 𝑦) log 𝑝(𝑋=𝑥,𝑌=𝑦)

𝑝(𝑋=𝑥)𝑝(𝑌=𝑦)

7 Bayesian approach

We consider everything as probability, and use Bayes’ rule lots.

𝑝(𝐴 | 𝐵) = 𝑝(𝐵 | 𝐴) · 𝑝(𝐴)
𝑝(𝐵)

𝑝(𝒘) is the prior, and reflects our belief/assumptions about the weights.

𝑝(D | 𝒘) is the likelihood of D given 𝒘.

𝑝(D) =
´
𝒘 𝑝(D | 𝒘)𝑝(𝒘) 𝑑𝒘 is the marginal likelihood

The posterior is 𝑝(𝒘 | D), and by Bayes rule: 𝑝(𝒘 | D) =
𝑝(D |𝒘)𝑝(𝒘)

𝑝(D) . It is the

updated belief about the parameters given the data observed.

Themaximum a posteriori/MAP estimate of 𝒘 is 𝒘𝑀𝐴𝑃 that maximises 𝑝(𝒘 | D),
equivalently maximising 𝑝(D | 𝒘)𝑝(𝒘) / log 𝑝(D|𝒘) + log 𝑝(𝒘), as 𝑝(D) is just a
difficult constant.

Applying the Bayesian approach to choose new weights:

� given pre-existing data D, and a new input point 𝒙𝑛𝑒𝑤, we want to predict
𝑦𝑛𝑒𝑤 - precisely, calculate/approximate 𝑝(𝑦𝑛𝑒𝑤 |𝑥𝑛𝑒𝑤,D) for different values of
𝑦𝑛𝑒𝑤.

� we have 𝑝(𝑦𝑛𝑒𝑤 | 𝑥𝑛𝑒𝑤,D) =
´
𝒘 𝑝(𝑦𝑛𝑒𝑤 | 𝒘, 𝒙𝑛𝑒𝑤)𝑝(𝒘 | 𝐷) 𝑑𝒘 (†) (by law of

total prob)

1. we could just calculate (†) which gives us the entire distribution of 𝑦𝑛𝑒𝑤, so we
can calculate the median/mean/etc. but this is a very complicated integral

(a) we can simplify a little, as(†) =
´
𝒘 𝑝(𝑦 | 𝒘, 𝒙𝑛𝑒𝑤) 𝑝(D |𝒘)𝑝(𝒘)

𝑝(D) 𝑑𝒘, so we

can ignore the 𝑝(D) term. This is still complicated, as integrating over
all 𝒘 may be very large.

2. Even simpler: we just choose the most likely parameters 𝒘𝑀𝐴𝑃 given the data
at hand, and use just those for prediction - i.e. 𝑝(𝑦𝑛𝑒𝑤 | 𝑥𝑛𝑒𝑤,D) = 𝑝(𝑦𝑛𝑒𝑤 |
𝒘𝑀𝐴𝑃 , 𝒙𝑛𝑒𝑤)
(there should be some mathsy justification for this)

9

Thus, if we choose 2, then we have a very simple learning process, which is just
calculating 𝒘𝑀𝐴𝑃

If we apply approach 2 to LR, we get Ridge Regression.

We can also apply approach 1 to LR (as it’s not too complicated), and the closed
form solution is in the notes.

8 Optimisation: Convexity & LPs

Basics:

� objective function

� feasible set

� optimal value

� global optima

� local optima

minimise: 𝑓 (𝒙)
st𝑔𝑖 (𝒙) ≤ 0 𝑖 ≤ 𝑚

ℎ𝑗 (𝒙) = 0 𝑗 ≤ 𝑛

Convexity

𝐶 ⊆ R𝐷 is convex if ∀𝒙, 𝒚 ∈ 𝐶 𝜆 ∈ [0, 1] 𝜆𝒙 + (1 − 𝜆)𝒚 ∈ 𝐶. E.G: R𝐷 , intersections,
polyhedra, set of positive semi-definite matrices

𝑓 : 𝐶 → R, where 𝐶 is convex, is a convex function if ∀𝒙, 𝒚 ∈ 𝐶 𝜆 ∈ [0, 1] 𝑓 (𝜆𝒙 + (1 − 𝜆)𝒚) ≤
𝜆𝑓 (𝒙) + (1 − 𝜆)𝑓 (𝒚).
Convex optimisation is of the form:

minimise: 𝑓 (𝒙)
st𝑔𝑖 (𝒙) ≥ 0 𝑖 ≤ 𝑚

ℎ𝑗 (𝒙) = 0 𝑗 ≤ 𝑛

Where 𝑓 , 𝑔𝑖 are convex, and ℎ𝑗 are affine (note equiv to min 𝑓 st 𝑔𝑖, ℎ𝑗,−ℎ𝑗 ≤ 0, which
is still convex as −ℎ𝑗 is still affine)

In convex optimisation, all local optima are global optima.

Problems as LPs

Note LPs are convex optimisation problems.

Absolute Loss LR can be expressed as an LP, with the same optima.

10

Lagrangian & duals

The Lagrange form of this is

Λ(𝒙; 𝜶, 𝝁) := 𝑓 (𝒙) −
𝑚∑︁
𝑖=1

𝛼𝑖𝑔𝑖 (𝒙) −
𝑙∑︁
𝑗=1

𝜇 𝑗ℎ𝑗 (𝒙)

KKT conditions for a critical point (𝒙∗, 𝜶∗, 𝝁∗) to be a minimum:

1. primal feasibility: 𝑔𝑖 (𝒙∗) ≥ 0, ℎ𝑗 (𝒛∗) = 0 for 𝑖 = 1 ≤ 𝑚, 𝑗 ≤ 𝑛

2. dual feasibility: 𝛼∗
𝑖
≥ 0 for 𝑖 ≤ 𝑚

3. complementary slackness: 𝛼∗
𝑖
𝑔𝑖 (𝒙∗) = 0 for 𝑖 ≤ 𝑚.

If the problem is convex optimisation, then the KKT conditions are sufficient and
necessary for a critical point of the Lagrangian to also be a global minimum of the
original problem.

9 Gradient descent

remember gradients, hessians

Aim: optimise a function 𝑓 (𝒘) wrt to the argument 𝒘, on an unconstrained set.

Start: some sensible-enough 𝒘0

iterative step: 𝒘𝑡+1 := 𝒘𝑡 − 𝜂𝑡𝒈𝑡 = 𝒘𝑡 − 𝜂𝑡∇𝑓 (𝒘𝑡), where 𝒈𝑡 is the gradient ∇𝑓 (𝒘𝑡),
𝜂𝑡 is the learning rate at time 𝑡.

Choice of 𝜂𝑡: varies based on method - often a hyperparameter.

If 𝑓 is convex, then the iterative process will converge to a global minimum (assuming
𝜂𝑡 doesn’t converge to 0 first). If not, we may find a local minima or a saddle point

Subgradients

Aim: gradients, but for convex non-differentiable functions.

𝒈 is a sub-gradient of 𝑓 at 𝒘0 if 𝑓 (𝒘) ≥ 𝑓 (𝒘0) + 𝒈⊤ (𝒘 −𝒘0)

For example, sign(𝒘) (sign(0) can be anything in [−1, 1]) is a subgradient for ∥𝒘∥1
at 0

11

Newton’s Method

uses the quadratic approximation from Taylor’s theorem near 𝒘𝑡: 𝑓𝑞 (𝒘) = 𝑓 (𝒘𝑡) +
𝒈⊤𝑡 (𝒘 −𝒘𝑡) + 1/2(𝒘 −𝒘𝑡)⊤𝑯 𝑡 (𝒘 −𝒘𝑡)
We step to the stationary point of the quadratic approximation, so 𝒘𝑡+1 = 𝒘𝑡−𝑯−1

𝑡 𝒈𝒕
is the iterative step.

Note this is very expensive per step, but also much faster than gradient descent.

Note it also seeks stationary points in general, rather than minima, so if we have a
non-convex function, we may be going the wrong direction.

SGD/Minibatching

𝒈𝒊 := ∇𝒘ℓ (𝒘; 𝒙𝑖, 𝑦𝑖) is the loss wrt data point 𝑖 out of 𝑁 total.

Now consider 𝒈 𝐼 , where 𝐼 ∼ Unif{1..𝑁}
E[𝒈 𝐼] = 1

𝑁

∑𝑁
𝑖=1 𝒈𝑖, which is the entire gradient.

Thus a method where at each step we only calculate the gradient wrt 1 random
point and use that for gradient descent is probabilistically correct, and much faster.

Note the regularisation term must still be included, but may need scaling, depending
on whether the original objective summed or averaged the 𝒈𝑖’s, for 𝑖 ∈ 1..𝑁

Improve by “picking multiple 𝐼” - this is minibatching.

This also works well when we can’t load all the data at once - i.e. it works online

Constraints with Gradient Descent

Gradient descent can step outside the feasible/constraint set.

Can return to it after each step using projection operator back into the constrained
set (can be very expensive)

10 Generative Models for Classification (incl NBC)

The problem:

� input data 𝒙 or 𝑿 (N lots of 𝒙)

� output classes {1...𝐶}

� (parameters 𝜽)

Generative plan: we consider 𝑝(𝒙, 𝑦 | 𝜃),not 𝑝(𝑦 | 𝒙, 𝜃)
How to predict:

� given a point 𝒙𝑛𝑒𝑤,for each possible class 𝑐 ∈ {1..𝐶}, calculate 𝑝(𝑦 = 𝑐 | 𝒙𝑛𝑒𝑤, 𝜃)

12

� choose the class with the highest - i.e. 𝑦 := argmax𝑐∈{1..𝐶} 𝑝(𝑦 = 𝑐 | 𝒙𝑛𝑒𝑤, 𝜃)

� practically, we use the ∝ version of Bayes rule: 𝑝(𝑦 = 𝑐 | 𝒙𝑛𝑒𝑤, 𝜃) ∝ 𝑝(𝑦 = 𝑐 |
𝜃) · 𝑝(𝒙𝑛𝑒𝑤 | 𝑦 = 𝑐, 𝜃)

� Note the cross entropy loss is the NLL of
∏

𝑐∈𝐶 (probability of c)number of occurences of c

Fitting data:

� we will split the parameters 𝜽 into 𝝅and 𝜽, 𝝅 for 𝑦 and 𝜽 for 𝑥.

� 𝑝(𝒙, 𝑦 | 𝜽, 𝝅) = 𝑝(𝑦 | 𝝅) · 𝑝(𝒙 | 𝑦, 𝜽) (def of cond prob)

� 𝜋𝑐 := 𝑝(𝑦 = 𝑐 | 𝝅), and note
∑
𝑐 𝜋𝑐 = 1.

� the likelihood of observing iid dataD = ⟨𝒙𝑖, 𝑦𝑖⟩𝑁𝑖=1 is 𝑝(D | 𝜽, 𝝅) = ∏𝑁
𝑖=1

((∏𝐶
𝑖=1 𝜋

1(𝑦𝑖=𝑐)
𝑐

)
· 𝑝(𝒙𝑖 | 𝑦𝑖, 𝜽)

)
� the log likelihood of “” is log 𝑝(D | 𝜽, 𝝅) = ∑𝐶

𝑐=1 𝑁𝑐 log(𝜋𝑐) +
∑𝑁
𝑖=1 log 𝑝(𝒙𝑖 |

𝑦𝑖, 𝜽), where 𝑁𝑐 is the no. of datapoints with 𝑦𝑖 = 𝑐.

� Thus we can just work out 𝜋𝑐 without caring about 𝒙’s, so 𝜋𝑐 =
𝑁𝑐

𝑁

Naive Bayes:

we assume that the features in 𝒙𝑖 are conditionally independent, given 𝑦𝑖 = 𝑐, to
avoid 𝜽 being too large. For each 𝑐, we consider 𝜽𝑐, and so:

𝑝(𝒙 | 𝑦 = 𝑐, 𝜽𝑐) =
𝐷∏
𝑗=1

𝑝(𝑥 𝑗 | 𝑦 = 𝑐, 𝜽 𝑗𝑐)

So for the whole dataset,

log 𝑝(D|𝜋, 𝜽) =
𝐶∑︁
𝑐=1

𝑁𝑐 log(𝜋𝑐) +
𝐶∑︁
𝑐=1

𝐷∑︁
𝑗=1

𝑁∑︁
𝑖=1

1𝑦𝑖=𝑐 log 𝑝(𝒙𝑖,𝑗 | 𝜽 𝑗,𝑐)

The type & choice of 𝜽 𝑗𝑐 depends on what feature 𝒙 𝑗 is - e.g. Gaussian (𝜇 𝑗𝑐 , 𝜎2𝑗𝑐) for
real 𝑥 𝑗, multinoulli/bernoulli for categorical 𝑥 𝑗.

To fit these, consider each feature separately, and find the empirical means/variances/marginal
dists, and use those for the parameters.

Gaussian discriminant analysis

Everything above except the NBC section applies.

We assume all features are real, and model them as multivariate Gaussian for each
class 𝑐. Thus we have a mean 𝝁𝑐 and a covariance matrice 𝚺𝑐 for each class 𝑐, and
𝑝(𝒙 | 𝑦 = 𝑐, 𝜽𝑐 = (𝝁𝑐 ,𝚺𝑐)) = N(𝒙 | 𝝁𝑐 ,𝚺𝑐)

13

The MLE’s for these are �̂�𝑐 := 1/𝑁𝑐

∑
𝑖:𝑦𝑖=𝑐 𝒙𝑖, �̂�𝑐 :=

1
𝑁𝑐

∑
𝑖:𝑦𝑖=𝑐 (𝒙𝑖 − �̂�𝑐) (𝒙𝑖 − �̂�𝑐)⊤

The decision boundaries for a model are the line of points 𝒙 with 𝑝(𝑦 = 𝑐 | 𝒙, 𝜽) =
𝑝(𝑦 = 𝑐′ | 𝒙, 𝜽) for two different classes 𝑐, 𝑐′.

For Gaussian Discriminant Analysis, these are (piecewise) quadratic curves.

Linear Discriminant Analysis: we share 𝚺 between the classes (but keep sepa-
rate weights), and then the decision boundaries are linear, and 𝑝(𝑦 = 𝑐 | 𝒙, 𝜽) =

softmax(...) (see notes for details)

11 Logistic Regression

A discriminative model for binary classification (either class 0 or class 1), so we
consider 𝑝(𝑦 | 𝒘, 𝒙), and model 𝑦 ∼ Bernoulli(sigmoid(𝒘 · 𝒙)). (note 𝒙 contains a
constant column)

Prediction: 𝑝(𝑦𝑛𝑒𝑤 = 1 | 𝒙𝑛𝑒𝑤,𝒘) = sigmoid(𝒘 · 𝒙𝑛𝑒𝑤), and then to decide on a class,
we pick whichever of 0, 1 has probability ≥ 1/2 - i.e. 𝑦𝑛𝑒𝑤 = 1(𝒘 · 𝒙𝑛𝑒𝑤 ≥ 0)

Likelihood: 𝑝(𝒚 | 𝑿 ,𝒘) =
𝑁∏
𝑖=1

sigmoid(𝒘 · 𝒙𝑖) 𝑦𝑖 · (1 − sigmoid(𝒘 · 𝒙𝑖))1− 𝑦𝑖 =
𝑁∏
𝑖=1
𝜇
𝑦𝑖
𝑖
·

(1 − 𝜇𝑖)1− 𝑦𝑖 , where 𝜇𝑖 = 𝑝 sigmoid(𝒘 · 𝒙𝑖)

𝑁𝐿𝐿(𝒚 | 𝑿 ,𝒘) = −
𝑁∑
𝑖=1

(𝑦𝑖 log 𝜇𝑖 + (1− 𝑦𝑖) log(1− 𝜇𝑖), which is just the cross-entropy

function !!!! note minus sign!!!.

To calculate the weights𝒘 to minimise the NLL, we can use Newton’s method/others,
as the NLL is convex. This is then iteratively reweighted least squares, as it is an
iterative procedure where we update the weights using least-squares on each step.

We can extend this to multi-class classifiers, and then 𝑝(𝑦 | 𝒙,𝑾) = softmax
([
𝒘1 · 𝒙 . . . 𝒘𝐶 · 𝒙

]⊤)
,

where 𝑾 is now a 𝐷 × 𝐶 matrix.

12 SVMs

Aim: given a set of data D = ⟨𝒙𝑖, 𝑦𝑖⟩𝑁𝑖=1 with positive +1 or negative −1 labels 𝑦𝑖,
identify a linear separator that separates the positive from the negatives.

If such a line exists, this is the linearly separable setting.

We specify the linear separator, a hyperplane, by 𝒘 · 𝒙 +𝑤0 = 0, for 𝑤0 ∈ R,𝒘 ∈ R𝐷,
so the positive side has 𝒘 · 𝒙 + 𝑤0 > 0, and the negative 𝒘 · 𝒙 + 𝑤0 < 0

the margin of a point 𝑥 is the distance from 𝑥 to the separating hyperplane,

margin(𝒙) = |𝒘 · 𝒙 + 𝑤0 |
∥𝒘∥2

14

Linearly separable case:

we assume the data is separable, and so want to find 𝒘, 𝑤0 st ∀𝑖 𝑦𝑖 (𝒘 · 𝒙𝑖 +𝑤0) ≥ 1.

� such weights exist, as we know the data is separable

� and we use ≥ 1 rather than > 0 as it’s easier, and since the dataset is finite,
we can always scale the weights to make the LHS arbitrarily large.

We want the maximum margin separator, so the optimisation problem is:

maximise min{margin(𝒙) : 𝒙 ∈ D}
st 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) ≥ 1 for 𝑖 = 1...𝑁

Since ∀𝑖 𝑦𝑖 (𝒘 ·𝒙𝑖+𝑤0) ≥ 1, and the margin for a datapoint is
𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0)

∥𝒘∥2
, clearly

for any 𝒙, margin(𝒙) ≥ 1

∥𝒘∥2
.

Thus, we can simplify the problem to the following quadratic program:

minimise
1

2
∥𝒘∥22 wrt 𝒘, 𝑤0 (1)

st 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) ≥ 1 for 𝑖 = 1...𝑁 (2)

An equivalent formulation is (see sheet3q3) (note, is still quadratic):

maximise 𝛼 wrt 𝒘, 𝑤0, 𝛼 (3)

st 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) ≥ 𝛼 for 𝑖 = 1...𝑁 (4)

∥𝒘∥22 ≤ 1 (5)

Non (linearly) separable case:

Since there is no linear separator, the best we can do is a separator that makes the
fewest misclassifications. Thus:

minimise
1

2
∥𝒘∥22 + 𝐶

𝑁∑︁
𝑖=1

𝜁𝑖 wrt 𝒘, 𝑤0 (6)

st 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) ≥ 1 − 𝜁𝑖 for 𝑖 = 1...𝑁 (7)

𝜁𝑖 ≥ 0 (8)

� A feasible solution to this quadratic progam always exists

15

� 𝜁𝑖 ≥ 0 is so that the program can’t compensate for mistakes by setting −𝜁𝑖
big on a point it has classified right

� note that if 𝜁𝑖 ∈ [0, 1] then the solution is being penalised for not separating
a datapoint “by enough”, as the point is on the correct side of the line, but
not by very far (as if the dataset is truly separable, we could choose weights
that separate by margin ≥ 1)

� clearly the optimal 𝜁𝑖 is 𝜁𝑖 := max{0, 1 − 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0)}, which we call
ℓhinge(𝒘, 𝑤0; 𝒙𝑖, 𝑦𝑖), the hinge loss

This is equivalent to minimising the objective function

L𝑆𝑉𝑀 (𝒘, 𝑤0 | 𝑿, 𝒚) := 1

2
∥𝑤∥22 + 𝐶

𝑁∑︁
𝑖=1

ℓhinge(𝒘, 𝑤0; 𝒙𝑖, 𝑦𝑖)

This is convex but not diff, so subgradient descent can work.

If we want a smooth version of hinge loss, then we use logistic loss, which is the
NLL of logistic regression on a single point:

ℓlogistic (𝑦𝑖;𝒘, 𝒙𝑖) − log
(
1 + 𝑒−(2𝑦𝑖−1) (𝒘·𝒙𝑖)

)
, which looks pretty similar:

Duals

If we write the Lagrangian of (6)-(8), and take its derivative wrt the primal variables
then we get a stationary of the orig problem iff the derivatives = 0, and thus a
minimum when the Lagrangian is minimised.

Simplified, we get:

maximise
𝑁∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝛼𝑖𝛼 𝑗 𝑦𝑖 𝑦𝑗 (𝒙𝑖 · 𝒙 𝑗) simplified Lagrangian (9)

st
𝑁∑︁
𝑖=1

𝛼𝑖 𝑦𝑖 = 0 from
𝜕Λ

𝜕𝑤0
= 0 (10)

0 ≤ 𝛼𝑖 ≤ 𝐶 for 𝑖 = 1...𝑚 from
𝜕Λ

𝜕𝜁𝑖
= 0 (11)

16

This has a simpler feasible space and fewer variables, but a more complicated ob-
jective (in 𝑁2 terms), than the primal.

The complementary slackness conditions say that 𝛼𝑖 · (𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) − 1 + 𝜁𝑖) = 0,
so either 𝛼𝑖 = 0 or 𝑦𝑖 (𝒘 · 𝒙𝑖 + 𝑤0) = 1 − 𝜁𝑖, so 𝒙𝑖 is a support vector, as it is one of
the points with the least margin.

We have 𝒘 =
∑𝑁
𝑖=1 𝛼𝑖 𝑦𝑖𝒙𝑖 (from the derivatives of the Lagrangian), so clearly the

optimal loss is made up of only the support vectors.

Multiclass classification

Either:

� ovo: train 𝐾 choose 2 binary classifiers for each possible pair

� ovr: train 𝐾 classifiers for each class 𝑘 against all the rest

How to classify new points:

ovo: choose the most commonly-output class from all the classifiers.

ovr: hope only 1 classifier says yes, all others say “in the rest”, otherwise
compare 𝒘 · 𝒙𝑛𝑒𝑤’s.

Both a bit shit.

13 Kernel Methods

Note that since 𝒘 =
∑𝑁
𝑖=1 𝛼𝑖 𝑦𝑖𝒙𝑖, prediction is 𝒘 · 𝒙𝑛𝑒𝑤 = 𝒘 =

∑𝑁
𝑖=1 𝛼𝑖 𝑦𝑖 (𝒙𝑖 · 𝒙𝑛𝑒𝑤),

so all we actually need to be able to do is calculate inner products (as long as you
solve using the dual)

we can generalise this to kernels 𝜅 as mentioned above, so then 𝒘 · 𝒙𝑛𝑒𝑤 = 𝒘 =∑𝑁
𝑖=1 𝛼𝑖 𝑦𝑖𝜅(𝒙𝑖, 𝒙𝑛𝑒𝑤)

Similar approaches work for other problems - e.g. for regularised linear regression,
the optimal weights are always a linear combination of the input points, so we can
build this into the optimisation problem and optimise for 𝛼𝑖 instead, so we can then
generalise the inner products.

Poly kernels

Recall degree 𝑑 polynomial expansions from above. Used as-is (without introducing
a kernel), the dual will be horrendous, as each vector has 𝐷𝑑 entries.

Instead, we introduce a different expansion 𝜙𝑑 st 𝜙𝑑 (𝒙) · 𝜙𝑑 (𝒙′) = (1 + 𝒙 · 𝒙′)𝑑 - e.g.
for 2 [1,

√
2𝑥1,

√
2𝑥2, 𝑥

2
1 , 𝑥

2
2 ,
√
2𝑥1𝑥2] and then the inner produce is nice, but we still

represent the same surfaces.

We can represent this instead as just the degree-𝑑 polynomial kernel 𝜅𝑑 (𝒙, 𝒙′) :=
(1 + 𝒙 · 𝒙′)𝑑, which avoids having to actually expand the vectors

17

Mercer kernels

The Gram matrix of a kernel is

𝑲 :=

𝜅(𝒙1, 𝒙1) · · · 𝜅(𝒙1, 𝒙𝑁)

...
. . .

...

𝜅(𝒙𝑁 , 𝒙1) · · · 𝜅(𝒙1, 𝒙𝑁)

A kernel is a Mercer kernel/ positive definite kernel if the Gram matrix is always
postive semi-definite.

If 𝜅1 and 𝜅2 are Mercer kernels, so are 𝜅1+𝜅2, 𝛼𝜅1 and 𝜅1×𝜅2, and 𝜅(𝒙, 𝒙′) := 𝒙⊤𝑩𝒙′

is one, if 𝐵 is semidefinite.

If we are solving the SVM dual with a Mercer kernel with Gram matrix K, we can
write it as (where � is elementwise multiplication)

1⊤𝜶 − 1

2
(𝜶 � 𝒚)⊤𝑲 (𝜶 � 𝒚)

This is concave, since 𝐾 is positive-semidef, so has a unique max value, and a unique
max point if 𝐾 is pos-def.

Thus we choose Mercer kernels so that we can easily solve the SVM problem w/o
worrying about local minima/runtime.

Examples:

� degree-d poly kernels as def above

� RBF kernels, which depend only on ∥𝒙 − 𝒙′∥2 , e.g. the spherical Gaussian
(above)

� for strings 𝒙, 𝒙′, let #𝑠 (𝒙) be no. of times the substring 𝑠 occurs in 𝒙.
Then 𝜅(𝒙, 𝒙′) := ∑

𝑠∈Σ∗ 𝑤𝑠 · #𝑠 (𝒙)#𝑠 (𝒙′) is a Mercer kernel (and computable
in O(|𝒙 | + |𝒙′ |)), that measures distance by common substrings (and allows
weighting different substrings differently)

Measuring performance

Consider true & false positives/negatives

true positive rate 𝑇𝑃𝑅 =
#𝑇𝑃

#𝑇𝑃 +#𝐹𝑁

false positive rate 𝐹𝑃𝑅 =
#𝐹𝑃

#𝐹𝑃 +#𝑇𝑁

precision 𝑃𝑟𝑒𝑐 =
#𝑇𝑃

#𝑇𝑃 +#𝐹𝑃

18

We can plot the TPR against the FPR, giving us the Receiver Operating Char-
acteristic curve when we vary some parameter - e.g. a threshold on 𝒘 · 𝒙𝑛𝑒𝑤, to see
where we want to set the parameter for the given application.

The areas under the ROC curve is a measure of a classifier, as it shows which
classifiers allow a good tradeoff.

The same can be done for the Precision against the TPR.

The confusion matrix is is a 𝐶 ×𝐶 matrix where 𝑁𝑖 𝑗 is the # of elements in class
𝑗 predicted to be in class 𝑖 (so actual classes along the top, predicitions along the
side).

A good confusion matrix is close to diagonal.

14 Neural Networks

a unit/artificial neuron with activation function 𝑓 , bias 𝑏and weights 𝒘 is a map
𝒙 ↦→ 𝑓 (𝑏 +𝒘 · 𝒙).

note logistic regression is an artificial neuron with the sigmoid function as the acti-
vation function.

Structure

We have 𝐿 ≥ 1 layers, where the first is the input, the last the output, and those in
between the hidden layers.

Each layer 𝑙 has 𝑛𝑙 units, and each unit is connected to all on the previous layer.

𝑾 𝑙 is the 𝑛𝑙 × 𝑛𝑙−1 matrix of weights for layer 𝑙, and 𝒃𝑙 the 𝑛𝑙 × 1 vector of biases
for layer 𝑙.

𝒛𝑙 := 𝒃𝑙 + 𝑾 𝑙𝒂𝑙−1 is the preactivation vector for layer 𝑙, and 𝒂𝑙 := 𝑓 (𝒛𝑙) (mostly
applied componentwise) is the activated vector for layers 𝑙 ≥ 1. These are the
forward equations

Note 𝒂0 := 𝒙, the input to the NN, and 𝒚 := 𝒂𝐿 is the output of the NN.

𝜽 denotes all of the parameters in the model.

Loss & optimisation

We want to minimise an objective function of L(𝜽;D), which we separate into data
points, so ℓ (𝒙𝑖, 𝑦𝑖; 𝜽) is the loss on a single datapoint, and is the difference between
the model prediction 𝑦𝑖 and the observed 𝑦𝑖.

We want the gradient wrt 𝜽, which is:

𝜕L(𝜽;D)
𝜕𝜽

=

𝑁∑︁
𝑖=1

𝜕ℓ (𝒙𝑖, 𝑦𝑖; 𝜽)
𝜕𝜽

19

For a datapoint (𝒙, 𝑦):

note ℓ ” := ” ℓ (𝒙, 𝑦; 𝜽)
We want 𝜕ℓ

𝜕𝑾 𝑖 and
𝜕ℓ

𝜕𝒃𝑖
for 𝑖 = 2..𝐿

We calculate the following derivatives:

𝜕ℓ

𝜕

𝜕ℓ

𝜕𝒂𝐿
depends on the loss function

𝜕ℓ

𝜕𝒛𝐿
=

𝜕ℓ

𝜕𝒂𝐿
· 𝜕𝒂

𝐿

𝜕𝒛𝐿
(BE1)

𝜕ℓ

𝜕𝒛𝑖
=

𝜕ℓ

𝜕𝒛𝑖+1
𝑾 𝑖+1 𝜕𝒂

𝑖

𝜕𝒛𝑖
for 𝑖 = 2...𝐿 − 1 (BE2)

𝜕ℓ

𝜕𝑾 𝑖
=

(
𝒂𝑖−1

𝜕ℓ

𝜕𝒛𝑖

)⊤
(BE3)

𝜕ℓ

𝜕𝒃𝑖
=
𝜕ℓ

𝜕𝒛𝑖
(BE4)

Considerations in training

Optimisation algorithm choice: ??????????????????????????

Runtime & space: The dominant term in backpropagation’s runtime is the matrix
multiplication.

We also need to store all the model parameters and preactivations and activations.

We generally do this in batches of data points, so all calculations above become
tensors.

Convexity: Optimising the loss is not a convex problem, as units in the same layer
are interchangable.

For categorical classification, we use cross-entropy loss, so ℓ (𝒙𝑖, 𝑦𝑖; 𝜽) = −(𝑦𝑖 log 𝑦𝑖+
(1 − 𝑦𝑖) log(1 − 𝑦𝑖)), for a binary classification 𝑦𝑖, 𝑦𝑖 ∈ [0, 1]

Saturation: this is when the activation function for some layer is very flat, and
thus gradient steps (in Newton’s/whatever) are very small, and we make no progress.

Fixes:

� sometimes swapping the loss function to cross-entropy

� using ReLU, which has gradient 1 on half the plane, so it can’t saturate that
side

� setting the initial weights correctly (small positive biases for ReLU, weights
from 𝑁 (0, 1/𝐷) for Relu or sigmoid))

� note the randomness of initial weights is important, so that all the units aren’t
doing the same thing.

20

Vanishing & exploding gradients: e.g. 𝜎 (𝑡) ≤ 0.25, so if we have several layers,
the gradients 𝜕ℓ

𝜕𝑥1
can rapidly vanish. Similarly, they can also explode, if they are all

large.

Overfitting: We often have far too many parameters. We can use:

� standard regularisation like a ℓ2penalty

� early stopping: after each step, test the algorithm on a validation set, and
when the performance starts to plateau on that, stop. This may not work
because it is a non-convex problem.

� adding data: obvious, but difficult - might be able to rotate/scale/transform
existing data?

� dropout: on each training step, a proportion (often 1/2) of the units in speci-
ficied layers are randomly dropped/ignored (their activation values assumed
0), and we train only with the ones left.

– we use the full layer for testing

– we must scale the weights down in the dropout layer, by the dropout
proportion.

� smaller layers

15 CNNs

Input: an image, in the form of a 3d tensor of shape 𝑚 × 𝑛 × 𝑐, each element in
[0, 1], representing an image with 𝑐 channels.

A convolution filter is a tensor of size 𝑊 × 𝐻 × 𝑐,𝑊, 𝐻 < 𝑚, 𝑛.

the convolution operation applies a filter to the image by taking the dot product
of the filter and 𝑊 × 𝐻 areas of the image, at regular intervals in each dimension.

The stride controls the distance between (the centre) of areas convoluted (can be
different for each dim)

The padding adds rows and cols of 0s to the edges, which allows every part of the
original image to be included in a convolution

If we apply 𝐾 kernels at once, the result is a 𝑚′ × 𝑛′ × 𝑐′ matrix, where 𝑚′ =⌊
𝑚 + 2𝑝 − 𝑓

𝑠
+ 1

⌋
, where 𝑠 is the stride, 𝑓 the size of the filter, and 𝑝 the padding

amount on each side. Same for 𝑛, 𝑛′.

For each layer,

� 𝑨𝑙 is the activation tensor, defined by 𝑔𝑙 (𝒁 𝑙) for some (non-linear) activation
function 𝑔,

� 𝑾 𝑙 is the convolution tensor that contains the the 𝐹𝑙 filters on layer 𝑙

21

� 𝒁 𝑙 := 𝑾 𝑙 ★ 𝑨𝑙−1 + 𝒃𝑙, where ★ represents convolution, taking into account
stride & padding.

If we have no padding and stride= 1, this is explicitly:

𝑧𝑙+1𝑖′ , 𝑗′ ,𝑓 ′ := 𝑏
𝑙+1,𝑓 ′ +

𝑊𝑓 ′∑︁
𝑖=1

𝐻𝑓 ′∑︁
𝑗=1

𝐹𝑙∑︁
𝑓=1

𝑎𝑙𝑖′+𝑖−1, 𝑗′+𝑗−1,𝑓𝑤
𝑙+1,𝑓 ′
𝑖,𝑗,𝑓

We can then calculate the standard backpropagation derivatives wrt 𝑾 𝑙 and 𝒃𝑙, and
use those as normal.

Pooling layers: a convolution layer will often output the same information in neigh-
bouring pixels - e.g. an edge finder will find an edge at pixels all along it, so we
add a layer that simplifies small areas.

Max-pool takes the max over a small area. let Ω(𝑘, 𝑙) be the set of indices in the
input layer which are considered at the point (𝑘, 𝑙) in the output layer

the forward equation is 𝑠𝑙+1
𝑘,𝑙

:= max𝑖,𝑗∈Ω(𝑘,𝑙) 𝑎
𝑙
𝑖,𝑗

the backward equation is
𝜕𝑠𝑙+1
𝑘,𝑙

𝜕𝑎𝑙
𝑖,𝑗

= 1
(
(𝑖, 𝑗) = argmax𝑜,𝑝∈Ω(𝑘,𝑙)𝑎

𝑙
𝑜,𝑝

)
16 RNNs & N-grams

A languagemodel is a model that takes as input a sequence of words𝒘 = (𝑤1, ..., 𝑤𝑛)
and returns a probability 𝑝(𝒘), st ∑

𝒘∈Σ∗ 𝑝(𝒘) = 1. We use them to answer the
question “given our training, how probable is this new utterance 𝒘?”

The problem: we want to map from input 𝒙 to some utterance 𝒘. It is often difficult
to model 𝑝(𝒘 | 𝒙), where training data for the 𝒙 → 𝒘 “conversion” is limited, and
instead use Bayes’ Rule to get 𝑝(𝒘) · 𝑝(𝒙 | 𝒘).

𝑝(𝒘) = 𝑝(𝑤1) · 𝑝(𝑤2 | 𝑤1) · · · 𝑝(𝑤𝑁 | 𝑤1, .., 𝑤𝑛−1) allows us to split a big joint
probability up into smaller chunks.

Evaluation is either by cross entropy: 𝐻 (𝒘) = − 1
𝑛
log2 𝑝(𝒘), or by perplexity, 2𝐻 (𝒘) ,

which is very sensitive to the tokenisation of the data.

N-Grams

For a 2-Gram model, use the Markov chain assumption, st 𝑝(𝒘) = 𝑝(𝑤1) · 𝑝(𝑤2 |
𝑤1) · · · 𝑝(𝑤𝑁 | 𝑤𝑁−1)

For an 𝑁-Gram model, we assume 𝑝(𝑤𝑘 | 𝑤1, ..., 𝑤𝑘−1) ≈ 𝑝(𝑤𝑘 | 𝑤𝑘−𝑁+1, ..., 𝑤𝑘−1).
note: 𝑁 is the length of the whole sequence we actually consider.

Model fitting is thus estimating these conditional probabilities of “𝑁 − 1 words →
1 successor”.

22

note that we add a special starting symbol, say < 𝑠 >, and assume there are 𝑁 of
those at the start of a sentence, and a < 𝑒𝑜𝑠 > symbol for the end, which the model
will generate when it thinks its done.

The traditional model fit for 𝑝(𝑤𝑘 | 𝑤𝑘−𝑁+1, ..., 𝑤𝑘−1) is just
Count(𝑤𝑘−𝑁+1...𝑤𝑘)
Count(𝑤𝑘−𝑁+1...𝑤𝑘−1)

The NN method is to train a neural network - normally a pretty simple one with
just 1 hidden layer, that takes as input 𝑁 − 1 words, and outputs a probability
distribution over the set of possible words.

E.g., a trigram network:

� input: 𝒙 := [𝑤−2;𝑤−1] (i.e. the concatenation of 2 one-hot vectors)

� hidden: 𝒉 := 𝑔(𝑉𝒙 + 𝒄)

� output: �̂� := softmax(𝑊𝒉 + 𝒃)

� use: convert training sentences into triples [𝑤𝑛−2, 𝑤𝑛−1, 𝑤𝑛], run the NN on
input [𝑤𝑛−2, 𝑤𝑛−1]; and given output �̂�𝑛, compare �̂�𝑛 to the actual 𝑤𝑛

– (remember to add < 𝑠 >’s at the start when converting to triples)

a word is often represented as a one-hot, so both it and the prob. dist. will be very
large vectors.

objective: F (𝒘) − 1
|𝒘 |

∑
𝑛 cost(𝑤𝑛, �̂�𝑛), where the cost function is cost(𝒂, 𝒃) = 𝒂𝑇 log 𝒃

Then we can backpropagate as normal.

Sampling: given a starting point of 𝑤−1, 𝑤0 (e.g. < 𝑠 >,< 𝑠 >), sample 𝑤1 from the
NN as above (MAP on �̂�1). Then repeat to get 𝑤2, with input 𝑤0, 𝑤1....

RNNs

Model:

� input: a sequence 𝒙1, 𝒙2, ..., 𝒙𝑛 of input vectors

� hidden layer: 𝒉𝑛 := 𝑔(𝑉 [𝒙𝑛; 𝒉𝑛−1] + 𝒄) - note the weights are shared across
time.

� output: �̂�𝑛 := softmax(𝑊𝒉𝑛 + 𝒃)

Thus each hidden layer depends on the last.

For a length 𝑁 sequence (e.g. a sentence with 𝑁 words), we can “unroll” the
network into a DAG computation graph.

Backprop for derivative of total cost wrt a hidden layer value:

𝜕F
𝛿ℎ2

=
∑︁

𝑖=2→end of seq

𝜕F
𝛿cost𝑖

𝜕cost𝑖
𝛿𝒑𝑖

𝜕𝒑𝑖
𝛿ℎ𝑖

23

(NB the sum

Backpropagation can be done as normal - called BPTT.

This is impractical for long sequences, so we do Truncated BPTT:

𝜕F
𝛿ℎ2

=
∑︁

𝑖=2→some limit

𝜕F
𝛿cost𝑖

𝜕cost𝑖
𝛿𝒑𝑖

𝜕𝒑𝑖
𝛿ℎ𝑖

epochwise T-BPTT:

� an input sequence is split into length 𝑘 subsequences - so the limit is 𝑛𝑘 for
some 𝑛.

� for each layer weight to be learned, we only consider its effect on costs within
that sequence

� this is somewhat to splitting training examples up into separate length 𝑘 inputs

more general T-BPTT:

� when we want to update the weights based on the cost of �̂�𝑖 and 𝒚𝑖, we only
generate derivatives via hidden layers for 𝑖...𝑖 + 𝑘

� All points in the input sequence are now treated equally

� more general, but likely slower...

17 PCA

dimensionality reduction technique

input: 𝑛 vectors 𝒙1, ..., 𝒙𝑛 ∈ R𝐷 , assumed to be centred, by subtracting their mean
𝝁 - i.e.

∑𝑛
𝑖=1 𝒙𝑖 = 0

given a target no. of dimensions 𝑘 ≪ 𝐷, we aim to find a orthonormal set of 𝑘
vectors 𝒖1, ...,𝒖𝑘 ∈ R𝐷 st ∀𝑖 ∈ {1..𝑛} we can approximate 𝒙𝑖 by the vector 𝒙𝒊 :=
𝑧𝑖1𝒖1 + · · · + 𝑧𝑖𝑘𝒖𝑘 for scalars 𝑧𝑖 𝑗 ∈ R.

We aim to find the optimal set of 𝒖𝑖’s, under the reconstruction error
∑𝑛
𝑖=1 ∥𝒙𝑖−𝒙𝑖∥.

If we let 𝑿 be a matrix with the 𝒙𝑖 as columns, and �̃� one with the �̃�𝑖 as cols,
then the rec. error is just ∥𝑿 − �̃� ∥2

𝐹
, so by Eckhart-Young the optimal �̃� is 𝑿 𝑘

from truncated SVD. Then 𝑼 𝑘 is the matrix with cols = left-singular vectors of
k-truncated SVD.

𝒁 := 𝑼⊤
𝑘
𝑿 is then the matric of coefficients 𝑧𝑖 𝑗.

PCA thus returns 𝑿 𝑘 and 𝒁.

Some uses:

� matching against a large dataset: simplify dataset with PCA, then for new
point 𝒙, the coords of 𝒙 − 𝝁 wrt the spanning 𝒖𝑖 are 𝑼

⊤
𝑘
(𝒙 − 𝝁), and then we

choose the closest point to those coords.

� grouping based on some specific characteristics: use PCA to somehow “distil”
each point into 𝑘 principal components, then use inner products to compare?

24

SVD

Given a real 𝑚 × 𝑛 matrix 𝐴 with rank 𝑟, a singular value decomposition of 𝐴 is
𝐴 = 𝑈Σ𝑉⊤,where

� 𝑈 is a 𝑚 × 𝑟 matrix st 𝑈⊤𝑈 = 𝐼𝑟. i.e. the columns of 𝑈 are orthonormal and
are called the left singular vectors 𝒖𝑖

� 𝑉 is a 𝑛 × 𝑟 matrix st 𝑉⊤𝑉 = 𝐼𝑟. i.e. the columns of 𝑈 are orthonormal and
are called the right singular vectors 𝒗𝑖

� Σ is a 𝑟 × 𝑟 diagonal matrix with entries 𝜎1 ≥ · · · · ≥ 𝜎𝑟 > 0

𝐴 = 𝑈Σ𝑉⊤ =
∑𝑟
𝑖=1 𝜎𝑖𝒖𝑖𝒗

⊤
𝑖
, and ∀𝑖 = 1..𝑟, 𝐴𝒗𝑖 = 𝜎𝑖𝒖𝑖.

This is the reduced SVD.

We can expand to the full SVD by:

� adding 𝑚 − 𝑟 extra columns of more left singular vectors (which span the left

null space) to 𝑈 to get 𝑈, 𝑚 × 𝑚

� adding 𝑛 − 𝑟 extra columns of more right singular vectors (which span the

right=standard null space) to 𝑉 to get 𝑉 , 𝑛 × 𝑛

� adding extra zeros to Σ to get a 𝑚 × 𝑛 matrix Σ̂

A full SVD represents 𝐴 as a rotation, a scaling and then another rotation.

Every matrix has an SVD, the 𝜎𝑖 are uniquely determined as {
√
𝜆 : 𝜆 ≠ 0, 𝜆 is an eigenvalue of 𝐴⊤𝐴 (equiv of 𝐴𝐴⊤)}

note the Frobenius norm of a matrix is ∥𝐴∥𝐹 :=
√︁
trace(𝐴𝑇 𝐴) =

∑
𝑖 𝜎

2
𝑖
for the 𝜎𝑖

from SVD

given 𝐴 =
∑𝑟
𝑖=1 𝜎𝑖𝑢𝑖𝑣

⊤
𝑖
, define the SVD truncation 𝐴𝑘 :=

∑𝑘
𝑖=1 𝜎𝑖𝒖𝑖𝒗

⊤
𝑖
for 𝑘 ≤ 𝑟. 𝐴𝑘

is a rank 𝑘 matrix, and is the best rank 𝑘 approximation to 𝐴 under the Frob norm
(Eckhart-Young Theorem).

Thus, for any 𝑘 ≤ 𝑟 we know what the “best” approximation is, so if we want to

choose a 𝑘, the relative error is:
∥𝐴 − 𝐴𝑘∥2𝐹

∥𝐴∥2
𝐹

=
𝜎2
𝑘+1+···+𝜎

2
𝑟

𝜎21+···+𝜎2𝑟
, and we can use this to

find the least 𝑘 with acceptable error.

Calculation:

to find 𝒗1:

� randomly choose a unit vector 𝒙0

� 𝒙𝑘 := (𝐴⊤𝐴)𝒙𝑘−1, 𝒚𝑘 := 𝒙𝑘 normalised, stop when ∥𝒚𝑘 − 𝒚𝑘−1∥ is sufficiently
small and return 𝑦𝑘

� this will converge to 𝒗1 as long as the first two eigenvalues of 𝐴⊤𝐴 aren’t the
same.

To find 𝒗𝑘+1: after applying 𝐴⊥𝐴, we project ortho to 𝒗1: i.e. 𝒙𝑘 := 𝒙𝑘 − (𝒙⊥
𝑘
𝒗1)𝒗1

25

18 Clustering

18.1 Partition based clustering

input data: 𝒙𝑖 ∈ R𝐷 for 𝑖 = 1..𝑁

goal: output a partition of {𝒙1, ..., 𝒙𝑁 }

18.1.1 𝑘-Means

we choose the partitions 𝐶1, ..., 𝐶𝑘 to minimise the distance of each 𝒙𝑖 to the mean
𝝁 𝑗 of the cluster 𝒙𝑖 is in. Thus:

𝑊 (𝐶1, ..., 𝐶𝑘) =
𝑘∑︁
𝑗=1

∑︁
𝑖∈𝐶 𝑗

𝒙𝑖 − ©«
∑︁
𝑙∈𝐶 𝑗

𝒙𝑙
ª®¬

2

2

Optimising this is NP-hard.

Lloyd’s algorithm: simple, slow convergence, not neccesarily to the global optimum

� initialise 𝝁1, ..., 𝝁𝑘 suitably (e.g. randomly chosen datapoints)

� repeat:

– assign each point to the closest mean (normally squared Euclidian, others
available)

– update each mean to the mean of the points assigned to it

� until “convergence” - i.e. the partitions don’t change any more.

Note initialisation really matters, so often we run it several times, and choose the
best of the returned partitions

How to choose 𝑘:

� plot a graph of objective function against 𝑘

� it should have an “elbow” - as 𝑘 increases towards the optimum, the objective
should decrease, and past the optimum, the drop should be much slower (as
we’re making pointless distinctions)

Transforming data

can represent data as either points in R𝐷 , or as a 𝑁 ×𝑁 dissimilarity matrix, which
is a symmetric matrix where the (𝑖, 𝑗)th entry is a measure of dis/similarity between
points 𝑖 and 𝑗.

We can convert points in R𝐷 to dissimilarity matrices by deciding on a distance
function (which may differ for each feature, weight them differently, and put the
whole thing through some non-decr function - e.g. tanh)

26

Converting a dissimilarity matrix 𝑀 to R𝐷: we want to solve argmin�̃�1 ,..,�̃�𝑁
∑
𝑖≠𝑗 (∥ �̃�𝑖−

�̃� 𝑗∥22 − 𝑀𝑖 𝑗)2.

If 𝑀 is pos-semidef:

� SVD 𝑀 = 𝑈Σ𝑈⊤ - note since 𝑀 is square, symmetric and pos–semidef, 𝑈 = 𝑉 ,
and 𝑈, Σ are both 𝑁 × 𝑁

� let 𝑿 := 𝑈
√
Σ (exists as the diagonal is non-negative)

� 𝑿𝑿
⊤
= ... = 𝑀, so the distances between the points defined by the cols in 𝑿

match 𝑀

� so return the columns of 𝑿 .

(if 𝑀 is not pos-semidef, we have to just solve the optimisation problem , which is
not convex and has no closed form)

Hierarchical Clustering

want to represent relations between clusters, to show that some are more similar
than others. Thus we produce a tree of clusters, with the coarsest (the whole
dataset) at the top, and the finest (individual points) at the bottom.

1 option is to recursively divide (e.g. with 2-means) clusters to build up a tree.

The other is is to start with 𝑁 (num. of points) clusters, and merge them to build
the tree.

Linkage algorithm:

� initialise clusters as 𝑁 singletons

� let 𝑆 = {1..𝑁} be the set of clusters available for merging

� repeat, until |𝑆 | = 2:

– let 𝑗, 𝑘 be the indices to the 2 closest clusters

– let 𝐶𝑙 := 𝐶 𝑗 ∪ 𝐶𝑘 be a new cluster (and a new index 𝑙)

– add 𝑙 to 𝑆, and remove 𝑗, 𝑘

– update distances 𝑑(𝐶𝑖, 𝐶 𝑗) for all 𝑖, 𝑗 (using chosen linkage rule)

Common linkage rules for 𝑑(𝐶,𝐶′):

� single: min𝑥∈𝐶,𝑥′∈𝐶′ 𝑑(𝑥, 𝑥′)

� average:
1

|𝐶 | × |𝐶′ |
∑
𝑥∈𝐶,𝑥′∈𝐶′ 𝑑(𝑥, 𝑥′)

� complete: max𝑥∈𝐶,𝑥′∈𝐶′ 𝑑(𝑥, 𝑥′)

27

Spectral clustering

when we have data in R𝐷, but clusters may not be convex (which 𝑘-means enforces).

We create an undirected graph of the data, and partition that. We have a parameter
𝑘.

for each datapoint, we add a node.

for each node, we connect it to its 𝑘 nearest neighbours. (some might have more
degree > 𝑘)

we set a weight on each edge, roughly representing distance - commonly, 𝑤𝑖 𝑗 :=
exp

(
−∥𝒙𝑖 − 𝒙 𝑗∥22/𝜎

)
, for some width parameter 𝜎 .

We now have a graph, so we can partition it:

� consider it as a symmetric 𝑁 ×𝑁 adjacency matrix 𝑊 , where 𝑊𝑖 𝑗is the weight
of the edge (𝑖, 𝑗), and is 0 if 𝑖, 𝑗 aren’t connected. 𝑊𝑖𝑖 = 0 for all 𝑖, as no
selfloops are allowed

� let 𝐷 be the diagonal matrix 𝐷𝑖𝑖 =
∑
𝑗𝑊𝑖 𝑗, and 𝐿 := 𝐷 −𝑊 the Laplacian of

the graph

� Find the 𝑘 eigenvectors 𝒗1, ...,𝒗𝑘 corresponding to the 𝑘 smallest eigenvalues

� Construct 𝑽 𝑘 := [𝒗2....,𝒗𝑘], the 𝑁 × (𝑘 − 1) embedding matrix

� Apply a clustering algorithm, e.g. 𝑘-means to the rows in 𝑽 𝑘, associating
each row with one of the original points.

FINISH!!!!!!!!!

28

	Linear Regression
	Perceptrons

	Maximum likelihood
	Maximum likelihood principle
	MLE for Linear Regression

	MLE for Laplace LR

	Basis expansion
	Learning curves and over/underfitting
	Regularisation & Model Selection
	Ridge regression
	Lasso
	Standardisation

	Model selection
	Bayesian approach
	Optimisation: Convexity & LPs
	Gradient descent
	Generative Models for Classification (incl NBC)
	Logistic Regression
	SVMs
	Kernel Methods
	Neural Networks
	CNNs
	RNNs & N-grams
	PCA
	Clustering
	Partition based clustering
	k-Means

