Integration

October 18, 2021

Note:

L’Hopital’s rule(s): Given f,g: R — R are defined and continuous on some closed interval
I containing a point ¢ (a may be an endpoint of the interval), and differentiable on int(I)\{a} ,
with f'(a), ¢'(a) existing, and f(a) = g(a) =0, ¢'(a) # 0, then

~

!
lim (=) = lim f/(a)
z—aj/a_/at g(&? z—a/a_/ay G (a)

~—

(Choose limit as appropriate to the interval)

Weirder bounds: use Taylor’s theorem to bound difficult functions - write out the Taylor
expansion, and then bound that instead.

proving not integrable: can choose just a subset of the region - e.g. to prove (z’zi#)s is

not integrable over (—1,1) x (—1, 1), show it isn’t over (0,1) x (0,1) (which then allows for easy
application of Tonelli’s theorem)

Aside: the problems with the Riemann integral

it works for continuous functions, other Riemann integrable ones, but it doesn’t work on every-
thing:

e.g. [ = lgn,1] = Xon[o,1); for which sup, I(¢-) = 0 and sup,, I(¢+) = 1 so this function
isn’t integrable, even though it would be nice to define the length of a set as m(E) = [ xg(z)dz

Also, we lack convergence for indefinite integrals - there’s nothing that says f, — f =
[ fu(z)dz — [ f(z)dx, but we do have that if f,, — f uniformly on [a, b] then lim,, f; fo(z)dz =

f: f(x)dz

We also can’t use it for probability theory and summing infinite series.



1 Basics

using Ry, = [—00,00] with multiplication, addition as expected, so any E C [—o00, 0] has a
supremum and infimum in [—oo, 00]. (note sup(f)) = —co)

for absolutely convergent/non-negative series you can sum in any order:

S an =sup{Y,c; an : Jafinitesubset of N}

n=1
And for a 2D series you can sum it whichever way you like, and extend the sup of finite subsets
idea.
limsupa, = lim (sup an) , liminf a,, = lim ( inf an)
n—

n—o00 m—00 \ py>m o] m—0o0 \ n>m

Useful properties: [1.3, obvious/sheet 1 g5]
e liminf,, , a, = —limsup,,_, . (—an),
e liminf < limsup
e limit exists <= limsup = liminf,
e lim sup preserves weak inequalities, follows triangle law.

2 Lebesgue measure

required properties for m : P(R) — [0, oc] to be a measure on R:

A) <m(B) if A C B (is monotone)

(i) m(®) = 0,m({z}) =0
(ii) m(I) = b — a where I is an interval with endpoints a < b
(iii) m(A+ z) = m(A)
(iv) m(ad) = |ajm(A)
) m(
i) m(

AUB)=m(A)+m(B) if AnB =0 (is finitely additive)

(a) m(U, 2, Ay) = D07, m(A,) if they are all disjoint from one another (countably ad-

n=14In

ditive)
(vii) m(U;2; Ay) = lim, oo m(A,) if (A,) is an increasing sequence of sets
Note 6. = m(A\B) = m(A) — m(B).

the Lebesgue outer measure is m*(A) = inf { > m(I,) : I, intervals, A C |J In} for ACR.
n=1 n=1
Properties thereof:

(i) m*(0) = 0,m*({«}) =0



m*(I) = b — a where [ is an interval with endpoints a < b

*

A+ z) = m*(A)

i) m*(
iii) m*(
(iv) m*(ad) = |a|m*(A4)
) m*(A) < m*(B) if A C B (is monotone)
i) m*(AU B) < m*(A) + m*(B) if AN B =0 (is partly finitely additive)
) m

(a

“(UnZy An) < 3002, m*(Ay) if they are all disjoint from one another (countably
subadditive, proof in 2015)

E CRis null if m*(E) =0. Also null:

e any subset of a null set

e countable union of null sets

e countable subsets of R are all null - e.g. N, Q.

e the Cantor set is null and closed. Its two definitions:

— let Cp =1[0,1], Cry1 = C,/3U(C,+2)/3 - i.e. taking out the middle third each time,
and C = () Cyp

n=1

- C= {m €10,1]: I(an)n>1 € {0,2 stz = > a,LB_”}
n=1

both are equivalent (kinda annoying to see)

it has measure 0, by using the set definition

the Cantor-Lebesgue function @ : [0,1] — [0,1] is ®(z) = > a,/2-27™ where
n=1

the a,, are defined as above for x € C, and ®(y) = sup,>, ,cc ®(7).

* this is discussed in detail in 2019Q1c, and is measurable.

a property @ of real numbers holds almost everywhere if the set of reals it does not hold on
is null.

m* is not countably additive on R [if it was a Vitali set would be measurable - A C [0,1] st

ry€edr#Fy = z-ygQ vre(0,1]3g€Qstz+q€ A taking U cqnp1y(4 — )]

E C R is Lebesgue measurable if m*(A) = m* (AN E) + m*(A\E) for all A C R - note
A\E := AN (R\E), and we automatically have m*(A) < m*(AN E) + m*(A\E)

let Mreb be the set of Lebesgue measurable sets. It contains: [proofs, see Capinski & Kopp]

e null sets

e intervals

o R\E € My, if E € Mrep



e U Ey, € Myep if B, € Myep, and if E, N Ey, = 0 for all n # k then m*((J,—, E) =

Z?’lem (En)

e open and closed subsets of R [ as open sets a countable union of intervals]

n=1

for E € My, write m(E) = m*(E), so m is countably additive (on Mi,ep), and m satisfies all
the properties of a measure for A, B, A,, € Myep, :

m* (0

—~
—

m*({z}) =0

)=
*(I) = b — a where I is an interval with endpoints a < b

(
(
m*(A + z) = m*(A)
m*(ad) = [ajm*(A)
(
m* (A
m*(A
) m

*

A) = m*(B) if A C B (is monotone)

*

UB) =
) —m*(B )
(U An) =300, m*(Ay) if they are all disjoint from one another (partly count-
ably addztwe)

m*(A) + m*(B) if AN B = 0 (is partly finitely additive) = m*(A\B) =



3 Measure spaces, measurable functions
given a set Q, F C P(Q) is o-algebra/o-field on Q if :

(i) Ve F
(ii) if £ € F then O\E € F
(iii) if B, € F forn=1,2,... then J,_, E, € F
= (o, B, eF

if so, then (2, F) is a measurable space, and sets in Fare F-measurable.

a measure on (Q, F) is a function p: F — [0, 00] st
(i) p®) =0
(ii) p(A) <u(B)if ACB,A,BeF

(iil) p(Upey En) = > o0r p(Ey) if the E,are disjoint sets in F

then (2, F,u) is measure space. a measure p is finite if u(Q) < oo, and a probability
measure if p(Q) =1

examples:

L4 (R; MLeba m)a

e the counting measure: (Q,P(Q),u = E — |E|) for any set 2

([0,1], Mrebl[0,1, ™) - a probability measure

(Q, F,P), as defined in probability, and thus a probability measure

e the Lebesgue-Stieltjes measure for F' : R — R, an increasing function, assumed that
Vo F(z) =limy_,1 F(y):

— m(E) = inf{ S () Ty = (an, bol, E C g Jn}

n=1
— acting on a o—algebra My containing all intervals, where mpg(a,b] = F(b) — F(a)
— 80, m} acts similarly to m* except that m%.(a,b) = F(b—)— F(a); m}([a,b]) = F(b) —
F(a—);mpE({z}) =0 <= Fiscont at z

useful properties of a measure space (2, F, u):

(i) for A,B € F with A C B, u(A) < u(B) [prove with disjoint union]

(ii) for a sequence (A,) € F with A, C A1 then pu(lJ,, 4n) = lim, o (A,) [prove with
Al =AN\A, 1]

(iii) for a sequence (A,) € F with A, D A, 41 and (A1) < oo then p(),, An) = limy, o0 p(Ar)
[prove with (ii), take complements, consider ()]



given B C P(Q) there is a unique o-algebra Fi on  generated by B in the sense that B C Fpg,
and if F is another o-algebra on Q with B C F then Fz C F | like a closure/interior

Mo, is the Borel o-algebra on R is the algebra on R generated by the intervals:

e description: “the class of subsets of R constructable from intervals in a countable number
of complements, countable unions, or countable intersections”.

e Mg, is the smallest o-algebra on R containing ()

(i) all intervals
(ii

) (a,00) for all a € R
(iii) all closed intervals
)

(iv) all open sets
o Mpor # Mpep [n0 need to prove]

o if £ € My, there exist A, B € Mpo, st AC E C B and B\A is null (so E\A and B\F
are also null) [no need to prove, in textbook]

the push-forward o-algebra of F by f is f.(F) := {G CR: f~}(G) € F} for a function
f:Q — R and a og-algebra F. It is a o-algebra over R [f~1(0) = 0, f~}(R\G) = Q\f1(G),...]

a function f: Q — R, given (Q, F) is measurable, is F-measurable

— the set of all intervals Z C f.(F) <= Vintervals I € R, f~1(I) € F

= Mpor C fu(F) <= B C f.(F) where B is one of the sets in ()

[proof since Z is one of the B, and for all of those B, B C Mg, and if B C f.(F) so
is ]:B = MBor]-

Various Lebesgue-measurable functions:

e constant functions,

e characteristic functions ys0f a set A <= A is measurable
e continuous or monotone functions f: R — R

e functions continuous a.e.

e g= fae. if f: R — R is measurable

e RVs in probability

e any function that can be explicitly defined

e f+g,fg,max(f,g) for f,g: R — R, both measurable
le.g. (f+9)7"((a,00)) = U,eq f1(g:00) Ng™ (a — ¢, 00) which is measurable]

e ho f for f measurable, i continuous is Borel measurable
[as if G C R is open then h=1(G) is, so f~1(h~1(G)) is measurable]



a function f: R — [—o0, 00] is measurable

— Va € R f~(a,00] € Mrep

— (VB € Mpor f7H(B) € Mreb) A f7H({o0}) € Mreb

= arctanof is measurable where arctan : [—o0o,00] — [—7/2,7/2] is the inverse tan
function.

given a sequence (f,,) of measurable functions R — [—00, 00], then the following are measurable:

e sup,, fn, inf, f, [prove (sup,, fn) '(a,00] = U,y f5 ' (a;00] by double incl|
e limsup,,_, . fn, liminf, o f [prove using limsup f,, = inf,, (suanm fn)}

e lim, o fn, if it exists [by lim sup, lim inf]
a function ¢ : R — R is simple if it is measurable and takes finitely many real values. e.g.:

o xg if E € My,
e O+, ¢, a- ¢, max(¢, 1), ho ¢ for ¢, simple, h any function

e any function of the form ) 8;Xp; for §; € R, Ej € Myep
j=1

e step functions [but simple functions are not always step functions]

k

if 9 = > a;xp, where ¢ takes non-zero values oy, ag, ..., and B; = ¢~1({a;}) then ¢ is in
i=1

standard/canonical form. - e.g. the standard from of X (0,2) + Xx[1,3) 15 1 - X(0,1)uj2,3] + 2 X[1,2)

for a measurable function f : R — [0, 00] there is an increasing sequence (¢,,) of non-negative

stmple functions st f(z) = lim,— o ¢n(z) for all z € R.

[3.9, proof: Bi, = {x: f(z) € k27", (k+1)27™)} for n = 1,2, .5k
¢n(x) = k27" if © € By ,for some (unique) k, otherwise 2" if f(x)

f R — R is measurable <= there is a sequence (t,,) of step functions st f = lim, a.e.
[textbook]



4 The Lebesgue integral

Definition for non-negative simple functions: for ¢ = Zle a;xp, (i.e. a; > 0) in stan-

dard form,
o k
/RQS = /_Oo o(x)dx = ;aim(BZ—)

Which is finite <= Vi m(B;) < co. This definition also works for non-negative simple functions
not in standard form.

Useful notes [4.1]:  [(¢+1¢) = [ ¢+ [ for ¢, non-negative simple functions, [a¢p =« [ ¢
for a € [0, 00)

if ¢ < pointwise then [¢ < [

Definition for non-negative measurable functions: for f: R — [0, 0]

/fsup{/¢:¢simp1e,os¢§f}
R R

And its integral over a measurable set £ C R is fE f= fR fxg if f is defined over all of R, and
otherwise, if f : E — [0,00] then [, f = [ f, where f = f on E and = 0 everywhere else.

f is integrable over E C R if fEf<oo.
Clearly if f<g, [f< [g,and [af=a [ ffora>0

MCT v1 [4.2] if (f,) is an increasing sequence of non-negative measurable functions, and
f = limy, o0 fn = Sup,, fna then ff = lim;, ffn
Proof:

o Vn fo < fysosup, [fu < [f
o for lim, o0 [ fr, > [ f, we want to find ¢ st 0 < ¢ < f, [¢ < limy,,00 [ fn, so that,
lim, o0 [ fn > [ fas [ fis a supremum.
— defining B,,: for a € (0,1),
x let B, = {z: fn(z) > a¢(z)}, which is measurable, as f,, — a¢ is.
* By C Bpy1, US2 B, =R, cause limy,_,oo B, =R
* (T) aan ¢ < f]Rf as a¢XBn < anB'n < fa
— given ¢ = Y1, Bixa,
an ¢ = Zle Bim(E; N By) — Zle Bim(E;) = [, ¢ because lim, o B, =R
— 50 o [p ¢ < limy,_yo0 [ fn by taking limits in (f)
— Then let @« — 1—



Baby MCT [4.3] given f is a non-negative/non-positive (it must have the same sign over all
of E) measurable function, (E,) an increasing sequence of measurable sets, E = U2, E,,, then
[ is integrable over E <= sup,, [, f < oo, and then [, f=sup, [ =lim, . [5

Proof: use MCT v1 with f, = fx&,.

Adding integrals [4.4] for non-negative measurable functions f,g [(f+g)=[f+ [g

Proof: take increasing sequences of simple functions for each of f, g, use MCT vl and the fact
that the integrals of simple functions add properly.

MCT for Series [4.5] For a sequence (g,,) of integrable functions that are all non-negative
a.e., and the sum of their integrals is finite, then their sum converges a.e. to an integrable

function , and [> 07 g =Y v [ gn

Agreeing with the Riemann integral [4.6] For a continuous function f : [a,b] — [0, 00),
the Lebesgue and Riemann integrals agree. Proof: step functions are simple functions, and there
is an increasing sequence of step functions with limit f since it is Riemann integrable, so apply
the MCT to them.

This is also true for f : [a,b] — [—00,00], since f is Riemann integrable <= f is bounded and
continuous a.e., and in such a case it is also Lebesgue measurable. - see notes page 17 for a brief
argument.

Definition for all measurable functions: for f: R — [—o00, 0], let fi = max(f,0), f—- =
InaX(ff,O)v so f=fy—f, |f‘ =f++f-
[ is integrable <= both fy,f_ are,and [f= [f+— [ f-

Useful facts [4.8]:

1. f is integrable = |f]| is integrable
2. f is measurable and |f| is integrable = f is integrable
3. Comparison test:

e f is measurable, and |f| < g for integrable ¢ = f is integrable
e |f| > g > 0 for measurable, non-integrable ¢ = f is not integrable

4. The integral is a linear operator on integrable functions (when their sums are defined)
5.f<g= [[<[g

6. f integrable, f = g a.e. = g is integrable, [ g = [ f. Note: this means the integral over
an interval is the same as that over its closure, etc.

7. f integrable = f(z) € R a.e.
8. f integrable, [|f|=0 = f =0 ae.



9. f integrable over measurable E = U2 | E,,, for measurable E,, f pf=lim, o f B, f

Proofs: 1), 2) from def of [ |f|;

3) since |f| <g — [If1< [ g
4),5) by splitting into +, —;

6) since |f — g| = 0 a.e., so any non-negative step function smaller than |f — g| is 0 a.e., so the
integral is 0;

7) by contradiction/ see s2q9;
8) s2q9 or directly since f, f— < |f|, same argument as 6;
9) by applying Baby MCT to f., f—

Extensions to the Comparison test [4.9]:

e ¢ integrable, h bounded and measurable = hg is integrable [prove using |gh| < C|g]]
e g integrable over R = g integrable over any measurable subset of R

e h bounded and measurable is integrable over any subset with finite measure.

Fundamental Theorem of Calculus (FTC) [4.1]: if g is a function with a continuous

derivative on a closed bounded interval [a,b], then ¢’ is integrable over [a,b] and fab g (x)dx =
9(b) —g(a)

No proof necessary, as Riemann=Lebesgue for such g.

Integration by parts [4.13]: For f, g continuously differentiable [i.e. have continuous deriva-
tive] on a closed bounded interval [a, b], then

b b
/ f(2)g (x)dz = [f(x)g(x)], —/ f(@)g(z)dz
Again, proof by Prelims.

Substitution [4.15]: for a monotonic function g : I — R with a continuous derivative, let
J =g(I), so J is an interval. A measurable function f : J — R is integrable <= (fog)-¢ is
integrable over I.

[ sz = [ tst)lg wiay

Note neither I nor J must be closed or bounded.

Proof: left out, see Qian 7.4

10



4.1 Proving a function is integrable
Simplifying the problem for a function f on an interval I:

e note/show that f is measurable

e replace f with |f], then use 4.8.2
Solving the problem:

e if f and I are bounded, then f is integrable over I

e if ] is unbounded, or f is unbounded on I, consider an increasing sequence of intervals (I,,)
st. f is bounded on each I,

— apply the FTC, integration by parts, or substitution to solve | . f
— then apply the Baby MCT

e use the Comparison test to find a simpler function that is easier to integrate/prove not
integrable.

11



5 Convergence theorems

MCT v2 [5.1]: for a sequence of integrable functions (f,,) with

(1) Vn fr < fot+1 ae., and
(2) sup,, [ fn < oo, then (f,) converges a.e. to an integrable function f, and [ f =
limy, 00 ffn

Proof: use 4.8 to ensure (1) is actually everywhere, and f,is finite everywhere. Then apply the
MCT vl to f, — fi-

Fatou’s Lemma [5.3]: for a sequence of non-negative measurable function (f,),

/lim inf f, <lim inf/fn
n—oo n—oo

Prove by applying the MCT to g, := inf,>, fp

Dominated Convergence Theorem (DCT) [5.4]: for a sequence of non-negative measur-
able function (f,) st

1. (fn(x)) converges a.e. to a limit f(x)

2. Jan integrable function g st Vn |f,(z)| < g(z) a.e

Then f is integrable, and [ f = lim, o0 [ fn.

Proof: f is measurable, and integrable by comparison, then apply Fatou’s lemma twice to show
equality of integrals

Bounded Convergence Theorem (BCT) [5.6]: for a bounded interval I, if (f,) is a se-
quence of functions integrable on I converging a.e. to f which is bounded by a constant c a.e.
for all n.

Then f is integrable on I, and [, f = lim, o0 [} fn
Proof by DCT.

Beppo Levi Theorem/ Lebesgue’s Series Theorem [5.9] for a sequence (g,) of inte-
grable functions with Y, [|gn| < 0o, then >" g, converges a.e. to an integrable function, and
f YonIn =2 f gn. Prove by applying MCT for series to positive and negative parts of g,

Alternate version of Beppo Levi [5.10] for a sequence (g,) of integrable functions with
>, |gn| integrable, then >~ g,converges a.e. to an integrable function, and [ Y, g, = [ gn.

Prove by applying Beppo Levi to fi = 22:1 In-

12



6 Integrals depending on a parameter

Setup: given f : R? — R, assuming = +— f(z,y) is integrable, we think about F(y) =
[ f(z,y)dz

Continuous-parameter DCT [6.2]: given I, J are intervals in R, f : I x J — R is a function
with the following properties:
(1) Yy € J, x — f(x,y) is integrable over I

(2) Vy € J, lim._,, f(z,2) = f(z,y) a.e. in z € I [continuous in y, the outer parameter,
at almost all ]

(3) Jg : I — R, an integrable function st Vy € J |f(z,y)| < g(x) at almost all z OR

(3" Vb € J, 3J, C J, an open sub-interval of J with b € J,, and dg, : I — R integrable st
Yy € Jp |f(z,y)| < g(x) at almost all z [implied by (3)]

Then, using one of condition (3) or (3’) = [, f(z,y)dz is continuous on J (condition 1

ensures that is is integrable)

Proof: use the normal DCT on f,(z) = f(x,y,) for any sequence y, — y in J

Differentiating F' [6.5]: given I, J are intervals in R, f : I x J — R is a function with the
following properties:

(1) Yy € J, x — f(x,y) is integrable over I

(2) VeelyelJ, g—’yc(x, y) exists - the derivative in the outer parameter

(3) T integrable g : I - R st Vy € J |g—£(m,y)\ < g(x) at almost all 2 OR

(3) Vb e J, AJ, C J, an open sub-interval of J with b € Jy,, and Jg, : I — R integrable st

Yy € Jy |g—£(:r,y)| < g(z) at almost all x [implied by (3)]

Then F(y) = [, f(x,y)dx is differentiable on J, and F'(y fI 5y (T, y)d

f(@yn)—f(z,y)
Yn—Y ’
which is integrable over I, and converges to g—g(ac y) as n — oco. The MVT says 3¢ € [yn, y]

st gn(z) = ﬂ(m 5) so by (3) |gn(2)] < g(x) a.e.(x). Thus the DCT is applicable, so %5@)

fI gn(z)dz — fI (z,y)dz asm — oco. Since the sequence was arbitrary, L fl gn(z)dz —
f]c’)y xydacasy —y

Proof: for any fixed y € J, (y,) a sequence converging to y with y,, # v, let g, (z) =

13



7 Double integrals

for f : R* — R, f can be integrable on R?, in which case its integral is [, f. This is defined in the
same way as integrability over R, excepting the bits where we compare to the Riemann integral.

[Skipping 7.1 to just list the two as actually used|

Tonelli’s theorem [7.3]: for f: R? — R, a measurable function, if either these two is finite,
then f,|f| are integrable over R?, and so Fubini’s theorem applies to f and |f|.

/R(/R'f “’W'dm) a, / ( / |f<x,y>dy) da

Fubini’s theorem [7.2]: for f:R? — R, integrable (i.e. over R?):

o x+— f(z,y) is integrable for almost all y,
e F(y) = [ f(z,y)dx is integrable (for the y for which it is defined),
e y— f(x,y) is integrable for almost all z,

e G(z) = [ f(z,y)dy is integrable (for the x for which it is defined)

[ ([ swmie)ay= [ swaita= [ ([ swiy) i

Changing variables [7.13]: Let f : E — R, for E C R? and T : E' — E an injective
differentiable function, and E’ C R? an open set.

f is integrable over F <= (foT)|det Jr| is integrable over E’, where Jr is the Jacobian matrix
of T.

Soif T': (u,v) € E' — (z,y) € E

o))

(z,y
(u,v

T Oudv v dv

oz Oz
= detJT:det{ gz gg } o Ox 0y Oz Oy
du v

o))

So if either of f,(f o T)|det Jr| is integrable,
O(x,y)

[ st = [ | 558 o)

Changing to polar coordinates [7.9]: Same setup as before, but specifically E' = {(r,0) :
r>0,0€[0,2x],(rcosf,rsinf) € E} , and T(r,0) = (rcosf,rsinh), so ggzzg =7, s0

/ flx,y)d(z,y) = flrcosf,rsinf)rd(r,0)
E E

14



8

LP Spaces

Let £? be the set of all measurable functions on R st | f|? is integrable, and N = {f € LP : f =0

a.e.},

the equivalence class [0] under the relation f ~ g = f =g a.e.

Let LP = £P /N, which is a vector space, as (|f + g|)? < (2max(|f],|g])? = 27 max(|f|?, |g|F) <
2(|f17 + |gl?).

Define ||f]l, = ([ |f|p)1/p, which is a norm on LP for p > 1. It clearly satisfies ||f|, =0 <=
f e N, and Jafll, = allfl, for all p > 0

Only for p > 1 does ||f + gllp < Ifllp + llgllp, which is Minkowski’s Inequality [8.1]

if either f, g is in AV, then it is trivial
solet a:=|fll, >0,8:= gl >0

t — t? is a convex and continuous function on [0, 00) [by looking at second derivative], so
As+ (L= A)t)P < AsP 4 (1 — A\)tP

p 1 P P
Apply this with \ = QL*FB’ s = ‘f(x)"t: \g(x)\7 S0 (|f+|g> < ( |f| + |g| )

o B a+fB ) T a4+ \art gl
for all z.
If+9I\" _ IfIP gl
We also have <a+ﬁ < = + = as |[f+g] < |f| + 9]
: : (If + gllp)® L A1)° (lgll)” atp
So b t t t < = =1
o by integrating we ge CEREY o1 + Bp—1 at B

And if we rearrange and take p-th roots, we get || f + gll, < (a4 8) = |fll, + llgll,

Holder’s Inequality [8.2]: Let p,q € (1,00) with 1/p+1/q = 1, f € LP,g € L1. Then
fg € LY and || fglli < |Ifllpllgllq- Note if p = g = 2, this is the Cauchy-Schwartz inequality.

t — logt is concave on [0, 00), because its second derivative —t~2 is negative.
1 1 s t
So, 5 logs 4 o logt < 1og(; + 5)'

Exponentiating gives us that s'/?¢/7 <

i ) ,:(|g| )
het s (Ifllp = lal

p q
I el 1P gl

1fllp llglle = pCIFIR)P alllglle)?

1/l Ul lgllg)? 1 1
Flllaly = 2017 aligl)? » " a

So [Ifgll < Ifllpllgllp, so fg € L*.

st
p+q'

Thus,

Integrating gives us
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Strict inclusion of L? spaces in others [8.3]: For pi,ps st 1 < p; < ps < oo (strict
inequality), if f € L*2(a,b), then:

o f € LPi(a,b)
o [1£llpy < (b= a)t/r=tme| ],

if f,, € LP?(a,b) and || fy||p, — O, then ||fy|l,, — 0

Proof: apply Holder’s Inequality to |f|P* and x(4p) With p = pa/p1,q¢ = p2/(p2 — p1), so
|f|p1X(a,b) € L; and |||f|p1X(a,b)H1 — f|f|”1 < (f|f|p2)p1/pz(b_ a)(pzfpl)/pz’ and then take
the pi-th root, to get || f|l,, < (b— a)/Pr=1/P2||f||,,.

This only works for spaces of finite measure - e.g. not (1,00)

L? is a complete measure space [8.5]: for p € [1,00), (f,) a Cauchy sequence in L? - i.e.
Ve >03IN m,n>N = ||fn — fmllp <e. Then 3f € L7 st

1. a subsequence (fy, ) of (f,) exists st limy_,o0 frn, () = f(z) a.e.

2. limp o0 ([ fn = fllp =10

So LP is a complete measure space.

Proof: see notes, since it’s quite detailed

Egorov’s Theorem [8.7]: Suppose that f,, — f a.e., and E is a measurable set with m(FE) <
00, and € > 0. Then, there is a measurable subset F' C E with m(E\F) < € st f,, — f uniformly
on F -ie., [[fn— fllee(ry = 0 forallp>1

[No proof]

Sequence of step functions [8.8] if f € LP(R) where p > 1, then there is a sequence of step
functions ¢y,st lim, oo | f — ¢nll, =0

8.1 Fourier transforms

Given f € £}(R), the Fourier transform of f is the function f: R — C as follows:

fs) = [ fayeaa
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Properties of the Fourier transform [8.9]

1. W;”msn < |Ifllx because [f(s)] = | [ f(z)e "% dz| < [, |f(x)e "|dx = [, |f(z)|dx =
1

2. f is continuous by applying the continuous-parameter DCT [6.2] with g(z) = |f(«)|, which
is integrable.

~

3. Riemann-Lebesgue lemma: f(s) — 0 as s — oo

e for f = X(a), ]?(s) =L(e7"b —¢7"1) 5 0 as s — +o0
e thus it works for step functions, since the integral is linear.

e for general f € L1(R), ¢ > 0, by 8.8 there is a step function ¢ st ||f — ¢||1 < &, and
by the point above 3K > 0 st |@(s)| < € whenever |s| > K.

o Then, |f(s)| < |f(s) = @(s)| +18(s)| < |f = @ll1 +B(s)| < 2¢ when |s| > K
4. given g(z) = zf(x), g € LY(R), then f is differentiable everywhere on C, and (f)'(s) =
—ig(s)
e by applying [6.5] with |g| as the dominating function.

~

5. if f has cont. derivative f’ € £L!(R), then the Fourier transform of f’ is isf(s)

e by integrating by parts over intervals [a,, b,] with a, — —00,b, — o0, so f(a,) —
0, f(bn) =0

9 Absolutely Continuous Functions

we want a class A of functions on an interval [a, b] st
1. if F € A then F is differentiable a.e., F’ € L*(a,b), and [ F'(y)dy = F(z) — F(a) for all
x € [a, b
2. if f € L'(a,b) and F(z) := [ f(y)dy for x € [a,b] , then F € Aand F' = f a.c.
Thus, this class of functions satisfies the FTC “in both directions”, and is the class of functions
of the form F(z) :=c+ [ f for some f € L'(a,b),c € R.

It turns out, by two theorems that go unproved, that A is also equivalent to the set of functions
that are absolutely continuous on [a, b] :

A function F': I — R is absolutely continuous on an interval I if Ve > 0,35 > 0 st
(Vn € N, disjoint subintervals of I (a,,b,) for r € {1..n} with ", (b, — a,) < §) =

S IF(b,) — F(a,)| < e
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10 Integrable functions

7% (1,00) for a > 1 by Baby MCT
x,(0,1) for a > —1 by Baby MCT

x xrational
f(z) = ) ) , R is measurable, and so has integral 0
0 =xirrational

sin(1/x),(0,1] as both are bounded

2"e~?[0,00) for n € N (i.e. incl e~®) since Ja, € R st Vo > a, €*/? > 2™, so on (0,a,) is is
bounded on bounded, and on [a,, c0), compare to e~*/2_and use Baby MCT on that.

1/v/z,(0,1] by Baby MCT
(log z)e=*,(0,00) by splitting to (0, 1] and [1,00), comparing to 1/y/z and xe™* resp.
2%Inx, (1,00) for a < —2 by comparison to x*1, and for a € [~2,1) by the Baby MCT manually

Vescx, (0,7) by splitting to [0,1], [1,7 — 1], [x — 1, 7] on which it is bdd by y/2/z, bounded on
a bounded interval, and then by symmetry to [0, 1]

e Tsinz, (0,00) by the DCT: integrate by parts on (0,nw), and find the limit of those (bound
provided by e~%)

2% log? z, (0,1) or e*u?, (1,€) by integration by parts

e‘zz,R by comparison to e~* for > 1, boundedness for [0, 1] and symmetry for x < 0, or
indeed by bounding by 2/(2 + 2?)
e /v/x,[0,1] by taking its Taylor series and integrating terms, then using Beppo Levi
2

—5—,(0,00) or e /2, (0, 00) since it is < 2/(2 + 2?) by looking at the Taylor series

ex

2/(2 + 2?),(0,00) by the MCT and the arctan substitution.

11 Non-integrable functions

tanz, (0,7/2) by the Baby MCT cause the integral on (0,7/2 — 1/n) tends to oo

{1”/n x € [n,n+1)

0 <1 cause positive and negative parts have infinite integrals
x

x*logx,[1,00) for a > 0 by comparison to logz, and for a € [—1,0] by the Baby MCT
log z,[1,00) by the Baby MCT

sinz/x, cosxz(l + x) or similar by 4.10.5 - i.e. integrate over m-long regions and show the sum
over those is infinite

sin1/x,[1,00) by sheet 2 Q10 part x
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12 Useful integrals

[Not proofs of integrability]
J & =|f(=)|+C

. 2
sinx > —z on [—m, 7]
™
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