
Integration

October 18, 2021

Note:

L’Hopital’s rule(s): Given f, g : R → R are defined and continuous on some closed interval
I containing a point a (a may be an endpoint of the interval), and differentiable on int(I)\{a} ,
with f ′(a), g′(a) existing, and f(a) = g(a) = 0, g′(a) 6= 0, then

lim
x→a/a−/a+

f(x)

g(x)
= lim
x→a/a−/a+

f ′(a)

g′(a)

(Choose limit as appropriate to the interval)

Weirder bounds: use Taylor’s theorem to bound difficult functions - write out the Taylor
expansion, and then bound that instead.

Don’t forget measurability !!!!!!!

proving not integrable: can choose just a subset of the region - e.g. to prove xy
(x2+y2)3 is

not integrable over (−1, 1)× (−1, 1), show it isn’t over (0, 1)× (0, 1) (which then allows for easy
application of Tonelli’s theorem)

Aside: the problems with the Riemann integral

it works for continuous functions, other Riemann integrable ones, but it doesn’t work on every-
thing:

e.g. f = 1Q∩[0,1] = χQ∩[0,1], for which supφ− I(φ−) = 0 and supφ+
I(φ+) = 1 so this function

isn’t integrable, even though it would be nice to define the length of a set as m(E) =
´
χE(x)dx

.

Also, we lack convergence for indefinite integrals - there’s nothing that says fn → f =⇒´
fn(x)dx→

´
f(x)dx, but we do have that if fn → f uniformly on [a, b] then limn→∞

´ b
a
fn(x)dx =´ b

a
f(x)dx

We also can’t use it for probability theory and summing infinite series.

1



1 Basics

using R∞ = [−∞,∞] with multiplication, addition as expected, so any E ⊆ [−∞,∞] has a
supremum and infimum in [−∞,∞]. (note sup(∅) = −∞)

for absolutely convergent/non-negative series you can sum in any order:∑∞
n=1 an = sup

{∑
n∈J an : J a finite subset of N

}
And for a 2D series you can sum it whichever way you like, and extend the sup of finite subsets
idea.

lim sup
n→∞

an = lim
m→∞

(
sup
n≥m

an

)
, lim inf
n→∞

an = lim
m→∞

(
inf
n≥m

an

)
Useful properties: [1.3, obvious/sheet 1 q5]

• lim infn→∞ an = − lim supn→∞(−an),

• lim inf ≤ lim sup

• limit exists ⇐⇒ lim sup = lim inf,

• lim sup preserves weak inequalities, follows triangle law.

2 Lebesgue measure

required properties for m : P(R)→ [0,∞] to be a measure on R:

(i) m(∅) = 0,m({x}) = 0

(ii) m(I) = b− a where I is an interval with endpoints a < b

(iii) m(A+ x) = m(A)

(iv) m(αA) = |α|m(A)

(v) m(A) ≤ m(B) if A ⊆ B (is monotone)

(vi) m(A ∪B) = m(A) +m(B) if A ∩B = ∅ (is finitely additive)

(a) m(
⋃∞
n=1An) =

∑∞
n=1m(An) if they are all disjoint from one another (countably ad-

ditive)

(vii) m(
⋃∞
n=1An) = limn→∞m(An) if (An) is an increasing sequence of sets

Note 6. =⇒ m(A\B) = m(A)−m(B).

the Lebesgue outer measure is m∗(A) = inf

{ ∞∑
n=1

m(In) : In intervals, A ⊆
∞⋃
n=1

In

}
for A ⊆ R.

Properties thereof:

(i) m∗(∅) = 0,m∗({x}) = 0
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(ii) m∗(I) = b− a where I is an interval with endpoints a < b

(iii) m∗(A+ x) = m∗(A)

(iv) m∗(αA) = |α|m∗(A)

(v) m∗(A) ≤ m∗(B) if A ⊆ B (is monotone)

(vi) m∗(A ∪B) ≤ m∗(A) +m∗(B) if A ∩B = ∅ (is partly finitely additive)

(a) m∗(
⋃∞
n=1An) ≤

∑∞
n=1m

∗(An) if they are all disjoint from one another (countably
subadditive, proof in 2015)

E ⊆ R is null if m∗(E) = 0. Also null:

• any subset of a null set

• countable union of null sets

• countable subsets of R are all null - e.g. N,Q.

• the Cantor set is null and closed. Its two definitions:

– let C0 = [0, 1], Cn+1 = Cn/3∪ (Cn+ 2)/3 - i.e. taking out the middle third each time,

and C =
∞⋂
n=1

Cn

– C =

{
x ∈ [0, 1] : ∃(an)n≥1 ∈ {0, 2}N stx =

∞∑
n=1

an3−n
}

– both are equivalent (kinda annoying to see)

– it has measure 0, by using the set definition

– the Cantor-Lebesgue function Φ : [0, 1] → [0, 1] is Φ(x) =
∞∑
n=1

an/2 · 2−n where

the an are defined as above for x ∈ C, and Φ(y) = supx≥y,x∈C Φ(x).

∗ this is discussed in detail in 2019Q1c, and is measurable.

a property Q of real numbers holds almost everywhere if the set of reals it does not hold on
is null.

m∗ is not countably additive on R [if it was a Vitali set would be measurable - A ⊆ [0, 1] st
x, y ∈ A, x 6= y =⇒ x− y /∈ Q, ∀x ∈ [0, 1] ∃q ∈ Q st x+ q ∈ A taking

⋃
q∈Q∩[0,1](A− q),...]

E ⊆ R is Lebesgue measurable if m∗(A) = m∗(A ∩ E) + m∗(A\E) for all A ⊆ R - note
A\E := A ∩ (R\E), and we automatically have m∗(A) ≤ m∗(A ∩ E) +m∗(A\E)

let MLeb be the set of Lebesgue measurable sets. It contains: [proofs, see Capinski & Kopp]

• null sets

• intervals

• R\E ∈MLeb if E ∈MLeb
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•
⋃∞
n=1En ∈ MLeb if En ∈ MLeb, and if En ∩ Ek = ∅ for all n 6= k then m∗(

⋃∞
n=1En) =∑∞

n=1m
∗(En)

• open and closed subsets of R [ as open sets a countable union of intervals]

for E ∈ MLeb write m(E) = m∗(E), so m is countably additive (on MLeb), and m satisfies all
the properties of a measure for A,B,An ∈MLeb :

(i) m∗(∅) = 0,m∗({x}) = 0

(ii) m∗(I) = b− a where I is an interval with endpoints a < b

(iii) m∗(A+ x) = m∗(A)

(iv) m∗(αA) = |α|m∗(A)

(v) m∗(A) = m∗(B) if A ⊆ B (is monotone)

(vi) m∗(A ∪ B) = m∗(A) + m∗(B) if A ∩ B = ∅ (is partly finitely additive) =⇒ m∗(A\B) =
m∗(A)−m∗(B)

(a) m∗(
⋃∞
n=1An) =

∑∞
n=1m

∗(An) if they are all disjoint from one another (partly count-
ably additive)
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3 Measure spaces, measurable functions

given a set Ω, F ⊆ P(Ω) is σ-algebra/σ-field on Ω if :

(i) ∅ ∈ F

(ii) if E ∈ F then Ω\E ∈ F

(iii) if En ∈ F for n = 1, 2, ... then
⋃∞
n=1En ∈ F

=⇒
⋂∞
n=1En ∈ F

if so, then (Ω,F) is a measurable space, and sets in Fare F-measurable.

a measure on (Ω,F) is a function µ : F → [0,∞] st

(i) µ(∅) = 0

(ii) µ(A) ≤ µ(B) if A ⊆ B,A,B ∈ F

(iii) µ(
⋃∞
n=1En) =

∑∞
n=1 µ(En) if the Enare disjoint sets in F

then (Ω,F , µ) is measure space. a measure µ is finite if µ(Ω) < ∞, and a probability
measure if µ(Ω) = 1

examples:

• (R,MLeb,m),

• the counting measure: (Ω,P(Ω), µ = E 7→ |E|) for any set Ω

• ([0, 1],MLeb|[0,1],m) - a probability measure

• (Ω,F ,P), as defined in probability, and thus a probability measure

• the Lebesgue-Stieltjes measure for F : R → R, an increasing function, assumed that
∀x F (x) = limy→x+ F (y):

– m∗F (E) = inf

{ ∞∑
n=1

mF (Jn) : Jn = (an, bn], E ⊆
∞⋃
n=1

Jn

}
– acting on a σ−algebra MF containing all intervals, where mF (a, b] = F (b)− F (a)

– so, m∗F acts similarly to m∗ except that m∗F (a, b) = F (b−)−F (a);m∗F ([a, b]) = F (b)−
F (a−);m∗F ({x}) = 0 ⇐⇒ F is cont at x

useful properties of a measure space (Ω,F , µ):

(i) for A,B ∈ F with A ⊆ B, µ(A) ≤ µ(B) [prove with disjoint union]

(ii) for a sequence (An) ∈ F with An ⊆ An+1 then µ(
⋃
nAn) = limn→∞ µ(An) [prove with

A′r = Ar\Ar−1]

(iii) for a sequence (An) ∈ F with An ⊇ An+1 and µ(A1) <∞ then µ(
⋂
nAn) = limn→∞ µ(An)

[prove with (ii), take complements, consider µ(Ω)]
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given B ⊆ P(Ω) there is a unique σ-algebra FB on Ω generated by B in the sense that B ⊆ FB,
and if F is another σ-algebra on Ω with B ⊆ F then FB ⊆ F [ like a closure/interior

MBor is the Borel σ-algebra on R is the algebra on R generated by the intervals:

• description: “the class of subsets of R constructable from intervals in a countable number
of complements, countable unions, or countable intersections”.

• MBor is the smallest σ-algebra on R containing (†)

(i) all intervals

(ii) (a,∞) for all a ∈ R
(iii) all closed intervals

(iv) all open sets

• MBor 6=MLeb [no need to prove]

• if E ∈ MLeb there exist A,B ∈ MBor st A ⊆ E ⊆ B and B\A is null (so E\A and B\E
are also null) [no need to prove, in textbook]

the push-forward σ-algebra of F by f is f∗(F) := {G ⊆ R : f−1(G) ∈ F} for a function
f : Ω→ R and a σ-algebra F . It is a σ-algebra over R [f−1(∅) = ∅, f−1(R\G) = Ω\f−1(G),...]

a function f : Ω→ R, given (Ω,F) is measurable, is F-measurable

⇐⇒ the set of all intervals I ⊆ f∗(F) ⇐⇒ ∀ intervals I ∈ R, f−1(I) ∈ F

⇐⇒ MBor ⊆ f∗(F) ⇐⇒ B ⊆ f∗(F) where B is one of the sets in (†)
[proof since I is one of the B, and for all of those B, B ⊆ MBor, and if B ⊆ f∗(F) so
is FB =MBor].

Various Lebesgue-measurable functions:

• constant functions,

• characteristic functions χAof a set A ⇐⇒ A is measurable

• continuous or monotone functions f : R→ R

• functions continuous a.e.

• g = f a.e. if f : R→ R is measurable

• RVs in probability

• any function that can be explicitly defined

• f + g, fg,max(f, g) for f, g : R→ R, both measurable

[e.g. (f + g)−1((a,∞)) =
⋃
q∈Q f

−1(q,∞) ∩ g−1(a− q,∞) which is measurable]

• h ◦ f for f measurable, h continuous is Borel measurable

[as if G ⊆ R is open then h−1(G) is, so f−1(h−1(G)) is measurable]
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a function f : R→ [−∞,∞] is measurable

⇐⇒ ∀a ∈ R f−1(a,∞] ∈MLeb

⇐⇒
(
∀B ∈MBor f

−1(B) ∈MLeb

)
∧ f−1({∞}) ∈MLeb

⇐⇒ arctan ◦f is measurable where arctan : [−∞,∞] → [−π/2, π/2] is the inverse tan
function.

given a sequence (fn) of measurable functions R→ [−∞,∞], then the following are measurable:

• supn fn, infn fn [prove (supn fn)−1(a,∞] =
⋃
n∈N f

−1
n (a,∞] by double incl]

• lim supn→∞ fn, lim infn→∞ fn [prove using lim sup fn = infm
(
supn≥m fn

)
]

• limn→∞ fn, if it exists [by lim sup, lim inf]

a function φ : R→ R is simple if it is measurable and takes finitely many real values. e.g.:

• χE if E ∈MLeb,

• φ+ ψ, φψ, α · φ, max(φ, ψ), h ◦ φ for φ, ψ simple, h any function

• any function of the form
n∑
j=1

βjXEj
for βj ∈ R, Ej ∈MLeb

• step functions [but simple functions are not always step functions]

if φ =
k∑
i=1

αiχBi where φ takes non-zero values α1, α2, ..., αk and Bi = φ−1({αi}) then φ is in

standard/canonical form. - e.g. the standard from of χ(0,2) + χ[1,3] is 1 · χ(0,1)∪[2,3] + 2 · χ[1,2)

for a measurable function f : R → [0,∞] there is an increasing sequence (φn) of non-negative
simple functions st f(x) = limn→∞ φn(x) for all x ∈ R.

[3.9, proof: Bk,n = {x : f(x) ∈ [k2−n, (k + 1)2−n)} for n = 1, 2, ...; k = 0, 1, 2, .., 4n − 1 and
φn(x) = k2−n if x ∈ Bk,nfor some (unique) k, otherwise 2n if f(x) ≥ 2n]

f : R → R is measurable ⇐⇒ there is a sequence (ψn) of step functions st f = limψn a.e.
[textbook]
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4 The Lebesgue integral

Definition for non-negative simple functions: for φ =
∑k
i=1 αiχBi

(i.e. αi > 0) in stan-
dard form, ˆ

R
φ =

ˆ ∞
−∞

φ(x)dx =

k∑
i=1

αim(Bi)

Which is finite ⇐⇒ ∀i m(Bi) <∞. This definition also works for non-negative simple functions
not in standard form.

Useful notes [4.1]:
´

(φ+ψ) =
´
φ+
´
ψ for φ, ψ non-negative simple functions,

´
αφ = α

´
φ

for α ∈ [0,∞)

if φ ≤ ψ pointwise then
´
φ ≤
´
ψ

Definition for non-negative measurable functions: for f : R→ [0,∞]

ˆ
R
f = sup

{ˆ
R
φ : φ simple, 0 ≤ φ ≤ f

}
And its integral over a measurable set E ⊆ R is

´
E
f =
´
R fχE if f is defined over all of R, and

otherwise, if f : E → [0,∞] then
´
E
f =
´
R f̃ , where f̃ = f on E and = 0 everywhere else.

f is integrable over E ⊆ R if
´
E
f <∞.

Clearly if f ≤ g,
´
f ≤
´
g, and

´
αf = α

´
f for α ≥ 0

MCT v1 [4.2] if (fn) is an increasing sequence of non-negative measurable functions, and
f = limn→∞ fn = supn fn, then

´
f = limn→∞

´
fn.

Proof:

• ∀n fn ≤ f , so supn
´
fn ≤

´
f

• for limn→∞
´
fn ≥

´
f , we want to find φ st 0 ≤ φ ≤ f ,

´
φ ≤ limn→∞

´
fn, so that,

limn→∞
´
fn ≥

´
f as

´
f is a supremum.

– defining Bn: for α ∈ (0, 1),

∗ let Bn = {x : fn(x) ≥ αφ(x)}, which is measurable, as fn − αφ is.

∗ Bn ⊆ Bn+1, ∪∞n=1Bn = R, cause limn→∞Bn = R
∗ (†) α

´
Bn

φ ≤
´
R f as αφχBn

≤ fnχBn
≤ fn

– given φ =
∑k
i=1 βiχEi

,

–
´
Bn

φ =
∑k
i=1 βim(Ei ∩Bn)→

∑k
i=1 βim(Ei) =

´
R φ because limn→∞Bn = R

– so α
´
R φ ≤ limn→∞

´
R fn by taking limits in (†)

– Then let α→ 1−
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Baby MCT [4.3] given f is a non-negative/non-positive (it must have the same sign over all
of E) measurable function, (En) an increasing sequence of measurable sets, E = ∪∞n=1En, then
f is integrable over E ⇐⇒ supn

´
En
f <∞, and then

´
E
f = supn

´
En

= limn→∞
´
En

Proof: use MCT v1 with fn = fχEn .

Adding integrals [4.4] for non-negative measurable functions f, g
´

(f + g) =
´
f +
´
g

Proof: take increasing sequences of simple functions for each of f, g, use MCT v1 and the fact
that the integrals of simple functions add properly.

MCT for Series [4.5] For a sequence (gn) of integrable functions that are all non-negative
a.e., and the sum of their integrals is finite, then their sum converges a.e. to an integrable
function , and

´ ∑∞
n=1 gn =

∑∞
n=1

´
gn

Agreeing with the Riemann integral [4.6] For a continuous function f : [a, b] → [0,∞),
the Lebesgue and Riemann integrals agree. Proof: step functions are simple functions, and there
is an increasing sequence of step functions with limit f since it is Riemann integrable, so apply
the MCT to them.

This is also true for f : [a, b]→ [−∞,∞], since f is Riemann integrable ⇐⇒ f is bounded and
continuous a.e., and in such a case it is also Lebesgue measurable. - see notes page 17 for a brief
argument.

Definition for all measurable functions: for f : R → [−∞,∞], let f+ = max(f, 0), f− =
max(−f, 0), so f = f+ − f−, |f | = f+ + f−.

f is integrable ⇐⇒ both f+, f− are, and
´
f =
´
f+ −

´
f−

Useful facts [4.8]:

1. f is integrable =⇒ |f | is integrable

2. f is measurable and |f | is integrable =⇒ f is integrable

3. Comparison test:

• f is measurable, and |f | ≤ g for integrable g =⇒ f is integrable

• |f | ≥ g ≥ 0 for measurable, non-integrable g =⇒ f is not integrable

4. The integral is a linear operator on integrable functions (when their sums are defined)

5. f ≤ g =⇒
´
f ≤
´
g

6. f integrable, f = g a.e. =⇒ g is integrable,
´
g =
´
f . Note: this means the integral over

an interval is the same as that over its closure, etc.

7. f integrable =⇒ f(x) ∈ R a.e.

8. f integrable,
´
|f | = 0 =⇒ f = 0 a.e.
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9. f integrable over measurable E = ∪∞n=1En, for measurable En,
´
E
f = limn→∞

´
En
f

Proofs: 1), 2) from def of
´
|f |;

3) since |f | ≤ g =⇒
´
|f | ≤

´
g;

4),5) by splitting into +,−;

6) since |f − g| = 0 a.e., so any non-negative step function smaller than |f − g| is 0 a.e., so the
integral is 0;

7) by contradiction/ see s2q9;

8) s2q9 or directly since f+, f− ≤ |f |, same argument as 6;

9) by applying Baby MCT to f+, f−

Extensions to the Comparison test [4.9]:

• g integrable, h bounded and measurable =⇒ hg is integrable [prove using |gh| ≤ C|g|]

• g integrable over R =⇒ g integrable over any measurable subset of R

• h bounded and measurable is integrable over any subset with finite measure.

Fundamental Theorem of Calculus (FTC) [4.1]: if g is a function with a continuous

derivative on a closed bounded interval [a, b], then g′ is integrable over [a, b] and
´ b
a
g′(x)dx =

g(b)− g(a)

No proof necessary, as Riemann=Lebesgue for such g.

Integration by parts [4.13]: For f, g continuously differentiable [i.e. have continuous deriva-
tive] on a closed bounded interval [a, b], then

ˆ b

a

f(x)g′(x)dx = [f(x)g(x)]
b
a −
ˆ b

a

f ′(x)g(x)dx

Again, proof by Prelims.

Substitution [4.15]: for a monotonic function g : I → R with a continuous derivative, let
J = g(I), so J is an interval. A measurable function f : J → R is integrable ⇐⇒ (f ◦ g) · g′ is
integrable over I.

ˆ
j

f(x)dx =

ˆ
I

f(g(y))|g′(y)|dy

Note neither I nor J must be closed or bounded.

Proof: left out, see Qian 7.4
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4.1 Proving a function is integrable

Simplifying the problem for a function f on an interval I:

• note/show that f is measurable

• replace f with |f |, then use 4.8.2

Solving the problem:

• if f and I are bounded, then f is integrable over I

• if I is unbounded, or f is unbounded on I, consider an increasing sequence of intervals (In)
st. f is bounded on each In

– apply the FTC, integration by parts, or substitution to solve
´
In
f

– then apply the Baby MCT

• use the Comparison test to find a simpler function that is easier to integrate/prove not
integrable.
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5 Convergence theorems

MCT v2 [5.1]: for a sequence of integrable functions (fn) with

(1) ∀n fn ≤ fn+1 a.e., and

(2) supn
´
fn < ∞, then (fn) converges a.e. to an integrable function f , and

´
f =

limn→∞
´
fn

Proof: use 4.8 to ensure (1) is actually everywhere, and fnis finite everywhere. Then apply the
MCT v1 to fn − f1.

Fatou’s Lemma [5.3]: for a sequence of non-negative measurable function (fn),

ˆ
lim inf
n→∞

fn ≤ lim inf
n→∞

ˆ
fn

Prove by applying the MCT to gr := infn≥r fn

Dominated Convergence Theorem (DCT) [5.4]: for a sequence of non-negative measur-
able function (fn) st

1. (fn(x)) converges a.e. to a limit f(x)

2. ∃an integrable function g st ∀n |fn(x)| ≤ g(x) a.e

Then f is integrable, and
´
f = limn→∞

´
fn.

Proof: f is measurable, and integrable by comparison, then apply Fatou’s lemma twice to show
equality of integrals

Bounded Convergence Theorem (BCT) [5.6]: for a bounded interval I, if (fn) is a se-
quence of functions integrable on I converging a.e. to f which is bounded by a constant c a.e.
for all n.

Then f is integrable on I, and
´
I
f = limn→∞

´
I
fn

Proof by DCT.

Beppo Levi Theorem/ Lebesgue’s Series Theorem [5.9] for a sequence (gn) of inte-
grable functions with

∑
n

´
|gn| <∞, then

∑
n gn converges a.e. to an integrable function, and´ ∑

n gn =
∑ ´

gn. Prove by applying MCT for series to positive and negative parts of gn

Alternate version of Beppo Levi [5.10] for a sequence (gn) of integrable functions with∑
n |gn| integrable, then

∑
n gnconverges a.e. to an integrable function, and

´ ∑
n gn =

∑ ´
gn.

Prove by applying Beppo Levi to fk =
∑k
n=1 gn.
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6 Integrals depending on a parameter

Setup: given f : R2 → R, assuming x 7→ f(x, y) is integrable, we think about F (y) =´
f(x, y)dx

Continuous-parameter DCT [6.2]: given I, J are intervals in R, f : I×J → R is a function
with the following properties:

(1) ∀y ∈ J , x 7→ f(x, y) is integrable over I

(2) ∀y ∈ J , limz→y f(x, z) = f(x, y) a.e. in x ∈ I [continuous in y, the outer parameter,
at almost all x]

(3) ∃g : I → R, an integrable function st ∀y ∈ J |f(x, y)| ≤ g(x) at almost all x OR

(3’) ∀b ∈ J , ∃Jb ⊆ J , an open sub-interval of J with b ∈ Jb, and ∃gb : I → R integrable st
∀y ∈ Jb |f(x, y)| ≤ g(x) at almost all x [implied by (3)]

Then, using one of condition (3) or (3’), F (y) =
´
I
f(x, y)dx is continuous on J (condition 1

ensures that is is integrable)

Proof: use the normal DCT on fn(x) = f(x, yn) for any sequence yn → y in J

Differentiating F [6.5]: given I, J are intervals in R, f : I × J → R is a function with the
following properties:

(1) ∀y ∈ J , x 7→ f(x, y) is integrable over I

(2) ∀x ∈ I, y ∈ J , ∂f
∂y (x, y) exists - the derivative in the outer parameter

(3) ∃ integrable g : I → R st ∀y ∈ J |∂f∂y (x, y)| ≤ g(x) at almost all x OR

(3’) ∀b ∈ J , ∃Jb ⊆ J , an open sub-interval of J with b ∈ Jb, and ∃gb : I → R integrable st
∀y ∈ Jb |∂f∂y (x, y)| ≤ g(x) at almost all x [implied by (3)]

Then F (y) =
´
I
f(x, y)dx is differentiable on J , and F ′(y) =

´
I
∂f
∂y (x, y)dx

Proof: for any fixed y ∈ J , (yn) a sequence converging to y with yn 6= y, let gn(x) = f(x,yn)−f(x,y)
yn−y ,

which is integrable over I, and converges to ∂f
∂y (x, y) as n → ∞. The MVT says ∃ξ ∈ [yn, y]

st gn(x) = ∂f
∂y (x, ξ), so by (3) |gn(x)| ≤ g(x) a.e.(x). Thus the DCT is applicable, so F (yn)−F (y)

yn−y =´
I
gn(x)dx→

´
I
∂f
∂y (x, y)dx as n→∞. Since the sequence was arbitrary, F (y′)−F (y)

y′−y =
´
I
gn(x)dx→´

I
∂f
∂y (x, y)dx as y′ → y

13



7 Double integrals

for f : R2 → R, f can be integrable on R2, in which case its integral is
´
R2 f . This is defined in the

same way as integrability over R, excepting the bits where we compare to the Riemann integral.

[Skipping 7.1 to just list the two as actually used]

Tonelli’s theorem [7.3]: for f : R2 → R, a measurable function, if either these two is finite,
then f, |f | are integrable over R2, and so Fubini’s theorem applies to f and |f |.

ˆ
R

(ˆ
R
|f(x, y)|dx

)
dy,

ˆ
R

(ˆ
R
|f(x, y)|dy

)
dx

Fubini’s theorem [7.2]: for f : R2 → R, integrable (i.e. over R2):

• x 7→ f(x, y) is integrable for almost all y,

• F (y) =
´
f(x, y)dx is integrable (for the y for which it is defined),

• y 7→ f(x, y) is integrable for almost all x,

• G(x) =
´
f(x, y)dy is integrable (for the x for which it is defined)

ˆ
R

(ˆ
R
f(x, y)dx

)
dy =

ˆ
R2

f(x, y)d(x, y) =

ˆ
R

(ˆ
R
f(x, y)dy

)
dx

Changing variables [7.13]: Let f : E → R, for E ⊆ R2, and T : E′ → E an injective
differentiable function, and E′ ⊆ R2 an open set.

f is integrable over E ⇐⇒ (f ◦T )|det JT | is integrable over E′, where JT is the Jacobian matrix
of T .

So if T : (u, v) ∈ E′ 7→ (x, y) ∈ E

∂(x, y)

∂(u, v)
:= det JT = det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂v

So if either of f, (f ◦ T )|det JT | is integrable,

ˆ
E

f(x, y)d(x, y) =

ˆ
E′
f(u, v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ d(u, v)

Changing to polar coordinates [7.9]: Same setup as before, but specifically E′ = {(r, θ) :

r ≥ 0, θ ∈ [0, 2π], (r cos θ, r sin θ) ∈ E} , and T (r, θ) = (r cos θ, r sin θ), so ∂(x,y)
∂(u,v) = r, so

ˆ
E

f(x, y)d(x, y) =

ˆ
E′
f(r cos θ, r sin θ)r d(r, θ)

14



8 Lp Spaces

Let Lp be the set of all measurable functions on R st |f |p is integrable, and N = {f ∈ Lp : f = 0
a.e.}, the equivalence class [0] under the relation f ∼ g =⇒ f = g a.e.

Let Lp = Lp/N , which is a vector space, as (|f + g|)p ≤ (2 max(|f |, |g|)p = 2p max(|f |p, |g|p) ≤
2p(|f |p + |g|p).

Define ‖f‖p =
(´
|f |p

)1/p
, which is a norm on Lp for p ≥ 1. It clearly satisfies ‖f‖p = 0 ⇐⇒

f ∈ N , and ‖αf‖p = α‖f‖p for all p ≥ 0

Only for p ≥ 1 does ‖f + g‖p ≤ ‖f‖p + ‖g‖p, which is Minkowski’s Inequality [8.1]

• if either f, g is in N , then it is trivial

• so let α := ‖f‖p > 0, β := ‖g‖p > 0

• t 7→ tp is a convex and continuous function on [0,∞) [by looking at second derivative], so
(λs+ (1− λ)t)p ≤ λsp + (1− λ)tp

• Apply this with λ = α
α+β , s = |f(x)|

α , t = |g(x)|
β , so

(
|f |+ |g|
α+ β

)p
≤ 1

α+ β

(
|f |p

αp−1
+
|g|p

βp−1

)
for all x.

• We also have

(
|f + g|
α+ β

)p
≤ |f |

p

αp−1
+
|g|p

βp−1
as |f + g| ≤ |f |+ |g|

• So by integrating we get
(‖f + g‖p)p

(α+ β)p
≤ 1

α+ β

(
(‖f‖p)p

αp−1
+

(‖g‖p)p

βp−1

)
=
α+ β

α+ β
= 1

• And if we rearrange and take p-th roots, we get ‖f + g‖p ≤ (α+ β) = ‖f‖p + ‖g‖p

Hölder’s Inequality [8.2]: Let p, q ∈ (1,∞) with 1/p + 1/q = 1, f ∈ Lp, g ∈ Lq. Then
fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖q. Note if p = q = 2, this is the Cauchy-Schwartz inequality.

• t 7→ log t is concave on [0,∞), because its second derivative −t−2 is negative.

• So, 1
p log s+ 1

q log t ≤ log( sp + t
q ).

• Exponentiating gives us that s1/pt1/q ≤ s
p + t

q .

• Let s :=

(
|f |
‖f‖p

)p
, t :=

(
|g|
‖g‖q

)q
• Thus,

|f |
‖f‖p

|g|
‖g‖p

≤ |f |p

p(‖f‖p)p
+

|g|q

q(‖g‖q)q

• Integrating gives us
‖fg‖1
‖f‖p‖g‖p

≤ (‖f‖p)p

p(‖f‖p)p
+

(‖g‖q)q

q(‖g‖q)q
=

1

p
+

1

q
= 1

• So ‖fg‖1 ≤ ‖f‖p‖g‖p, so fg ∈ L1.
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Strict inclusion of Lp spaces in others [8.3]: For p1, p2 st 1 ≤ p1 < p2 < ∞ (strict
inequality), if f ∈ Lp2(a, b), then:

• f ∈ Lp1(a, b)

• ‖f‖p1 ≤ (b− a)1/p1−1/p2‖f‖p2

if fn ∈ Lp2(a, b) and ‖fn‖p2 → 0, then ‖fn‖p1 → 0

Proof: apply Hölder’s Inequality to |f |p1 and χ(a,b) with p = p2/p1, q = p2/(p2 − p1), so

|f |p1χ(a,b) ∈ L1 and ‖|f |p1χ(a,b)‖1 =
´
|f |p1 ≤ (

´
|f |p2)p1/p2(b − a)(p2−p1)/p2 , and then take

the p1-th root, to get ‖f‖p1 ≤ (b− a)1/p1−1/p2‖f‖p2 .

This only works for spaces of finite measure - e.g. not (1,∞)

Lp is a complete measure space [8.5]: for p ∈ [1,∞), (fn) a Cauchy sequence in Lp - i.e.
∀ε > 0 ∃N m,n ≥ N =⇒ ‖fn − fm‖p < ε. Then ∃f ∈ Lp st

1. a subsequence (fnk
) of (fn) exists st limk→∞ fnk

(x) = f(x) a.e.

2. limn→∞ ‖fn − f‖p = 0

So Lp is a complete measure space.

Proof: see notes, since it’s quite detailed

Egorov’s Theorem [8.7]: Suppose that fn → f a.e., and E is a measurable set with m(E) <
∞, and ε > 0. Then, there is a measurable subset F ⊆ E with m(E\F ) < ε st fn → f uniformly
on F - i.e., ‖fn − f‖Lp(F ) → 0 for all p ≥ 1

[No proof]

Sequence of step functions [8.8] if f ∈ Lp(R) where p ≥ 1, then there is a sequence of step
functions φnst limn→∞ ‖f − φn‖p = 0

8.1 Fourier transforms

Given f ∈ L1(R), the Fourier transform of f is the function f̂ : R→ C as follows:

f̂(s) =

ˆ
R
f(x)e−isxdx

16



Properties of the Fourier transform [8.9]

1. ∀s |f̂(s)| ≤ ‖f‖1 because |f̂(s)| = |
´
R f(x)e−isxdx| ≤

´
R |f(x)e−isx|dx =

´
R |f(x)|dx =

‖f‖1

2. f̂ is continuous by applying the continuous-parameter DCT [6.2] with g(x) = |f(x)|, which
is integrable.

3. Riemann-Lebesgue lemma: f̂(s)→ 0 as s→ ±∞

• for f = χ(a,b), f̂(s) = i
s (e−isb − e−isa)→ 0 as s→ ±∞

• thus it works for step functions, since the integral is linear.

• for general f ∈ L1(R), ε > 0, by 8.8 there is a step function ϕ st ‖f − ϕ‖1 < ε, and
by the point above ∃K > 0 st |ϕ̂(s)| < ε whenever |s| > K.

• Then, |f̂(s)| ≤ |f̂(s)− ϕ̂(s)|+ |ϕ̂(s)| ≤ ‖f − ϕ‖1 + |ϕ̂(s)| ≤ 2ε when |s| > K

4. given g(x) = xf(x), g ∈ L1(R), then f̂ is differentiable everywhere on C, and (f̂)′(s) =
−iĝ(s)

• by applying [6.5] with |g| as the dominating function.

5. if f has cont. derivative f ′ ∈ L1(R), then the Fourier transform of f ′ is isf̂(s)

• by integrating by parts over intervals [an, bn] with an → −∞, bn → ∞, so f(an) →
0, f(bn)→ 0

9 Absolutely Continuous Functions

we want a class A of functions on an interval [a, b] st

1. if F ∈ A then F is differentiable a.e., F ′ ∈ L1(a, b), and
´ x
a
F ′(y)dy = F (x)− F (a) for all

x ∈ [a, b]

2. if f ∈ L1(a, b) and F (x) :=
´ x
a
f(y)dy for x ∈ [a, b] , then F ∈ A and F ′ = f a.e.

Thus, this class of functions satisfies the FTC “in both directions”, and is the class of functions
of the form F (x) := c+

´ x
a
f for some f ∈ L1(a, b), c ∈ R.

It turns out, by two theorems that go unproved, that A is also equivalent to the set of functions
that are absolutely continuous on [a, b] :

A function F : I → R is absolutely continuous on an interval I if ∀ε > 0,∃δ > 0 st

(∀n ∈ N, disjoint subintervals of I (ar, br) for r ∈ {1...n} with
∑n
r=1(br − ar) < δ) =⇒

n∑
r=1

|F (br)− F (ar)| < ε

17



10 Integrable functions

x−a, (1,∞) for a > 1 by Baby MCT

xa, (0, 1) for a > −1 by Baby MCT

f(x) =

{
x x rational

0 x irrational
, R is measurable, and so has integral 0

sin(1/x),(0, 1] as both are bounded

xne−x,[0,∞) for n ∈ N (i.e. incl e−x) since ∃an ∈ R st ∀x ≥ an e
x/2 ≥ xn, so on (0, an) is is

bounded on bounded, and on [an,∞), compare to e−x/2, and use Baby MCT on that.

1/
√
x, (0, 1] by Baby MCT

(log x)e−x, (0,∞) by splitting to (0, 1] and [1,∞), comparing to 1/
√
x and xe−x resp.

xa lnx, (1,∞) for a < −2 by comparison to xa+1, and for a ∈ [−2, 1) by the Baby MCT manually

√
cscx, (0, π) by splitting to [0, 1], [1, π − 1], [π − 1, π] on which it is bdd by

√
2/x, bounded on

a bounded interval, and then by symmetry to [0, 1]

e−x sinx, (0,∞) by the DCT: integrate by parts on (0, nπ), and find the limit of those (bound
provided by e−x)

xk log2 x, (0, 1) or ekuu2, (1, e) by integration by parts

e−x
2

,R by comparison to e−x for x ≥ 1, boundedness for [0, 1] and symmetry for x < 0, or
indeed by bounding by 2/(2 + x2)

e−x
2

/
√
x, [0, 1] by taking its Taylor series and integrating terms, then using Beppo Levi

x2

ex2−1
, (0,∞) or e−x

2/2, (0,∞) since it is ≤ 2/(2 + x2) by looking at the Taylor series

2/(2 + x2), (0,∞) by the MCT and the arctan substitution.

11 Non-integrable functions

tanx, (0, π/2) by the Baby MCT cause the integral on (0, π/2− 1/n) tends to ∞{
−1n/n x ∈ [n, n+ 1)

0 x < 1
cause positive and negative parts have infinite integrals

xa log x, [1,∞) for a ≥ 0 by comparison to log x, and for a ∈ [−1, 0] by the Baby MCT

log x, [1,∞) by the Baby MCT

sinx/x, cosx(1 + x) or similar by 4.10.5 - i.e. integrate over π-long regions and show the sum
over those is infinite

sin 1/x, [1,∞) by sheet 2 Q10 part x
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12 Useful integrals

[Not proofs of integrability]
´
f ′

f = ln |f(x)|+ C

sinx ≥ 2

π
x on [−π, π]
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