Integration

October 18, 2021

Note:

L'Hopital's rule(s): Given $f, g : \mathbb{R} \to \mathbb{R}$ are defined and continuous on some closed interval I containing a point a (a may be an endpoint of the interval), and differentiable on $int(I) \setminus \{a\}$, with f'(a), g'(a) existing, and $f(a) = g(a) = 0, g'(a) \neq 0$, then

$$\lim_{a \to a/a_{-}/a_{+}} \frac{f(x)}{g(x)} = \lim_{x \to a/a_{-}/a_{+}} \frac{f'(a)}{g'(a)}$$

(Choose limit as appropriate to the interval)

x

Weirder bounds: use Taylor's theorem to bound difficult functions - write out the Taylor expansion, and then bound that instead.

Don't forget measurability !!!!!!!

proving not integrable: can choose just a subset of the region - e.g. to prove $\frac{xy}{(x^2+y^2)^3}$ is not integrable over $(-1,1) \times (-1,1)$, show it isn't over $(0,1) \times (0,1)$ (which then allows for easy application of Tonelli's theorem)

Aside: the problems with the Riemann integral

it works for continuous functions, other Riemann integrable ones, but it doesn't work on everything:

e.g. $f = \mathbf{1}_{\mathbb{Q}\cap[0,1]} = \chi_{\mathbb{Q}\cap[0,1]}$, for which $\sup_{\phi_-} I(\phi_-) = 0$ and $\sup_{\phi_+} I(\phi_+) = 1$ so this function isn't integrable, even though it would be nice to define the length of a set as $m(E) = \int \chi_E(x) dx$

Also, we lack convergence for indefinite integrals - there's nothing that says $f_n \to f \implies \int f_n(x)dx \to \int f(x)dx$, but we do have that if $f_n \to f$ uniformly on [a, b] then $\lim_{n\to\infty} \int_a^b f_n(x)dx = \int_a^b f(x)dx$

We also can't use it for probability theory and summing infinite series.

1 Basics

using $\mathbb{R}_{\infty} = [-\infty, \infty]$ with multiplication, addition as expected, so any $E \subseteq [-\infty, \infty]$ has a supremum and infimum in $[-\infty, \infty]$. (note $\sup(\emptyset) = -\infty$)

for absolutely convergent/non-negative series you can sum in any order:

 $\sum_{n=1}^{\infty} a_n = \sup\left\{\sum_{n \in J} a_n : J \text{ a finite subset of } \mathbb{N}\right\}$

And for a 2D series you can sum it whichever way you like, and extend the sup of finite subsets idea.

$$\limsup_{n \to \infty} a_n = \lim_{m \to \infty} \left(\sup_{n \ge m} a_n \right) , \, \liminf_{n \to \infty} a_n = \lim_{m \to \infty} \left(\inf_{n \ge m} a_n \right)$$

Useful properties: [1.3, obvious/sheet 1 q5]

- $\liminf_{n \to \infty} a_n = -\limsup_{n \to \infty} (-a_n),$
- $\liminf \le \limsup$
- limit exists \iff lim sup = lim inf,
- lim sup preserves weak inequalities, follows triangle law.

2 Lebesgue measure

required properties for $m: \mathcal{P}(\mathbb{R}) \to [0, \infty]$ to be a **measure** on \mathbb{R} :

(i)
$$m(\emptyset) = 0, m(\{x\}) = 0$$

(ii) m(I) = b - a where I is an interval with endpoints a < b

(iii)
$$m(A+x) = m(A)$$

- (iv) $m(\alpha A) = |\alpha|m(A)$
- (v) $m(A) \leq m(B)$ if $A \subseteq B$ (is monotone)
- (vi) $m(A \cup B) = m(A) + m(B)$ if $A \cap B = \emptyset$ (is finitely additive)
 - (a) $m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n)$ if they are all disjoint from one another (*countably ad-ditive*)
- (vii) $m(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} m(A_n)$ if (A_n) is an increasing sequence of sets

Note 6. $\implies m(A \setminus B) = m(A) - m(B).$

the **Lebesgue outer measure** is $m^*(A) = \inf \left\{ \sum_{n=1}^{\infty} m(I_n) : I_n \text{ intervals}, A \subseteq \bigcup_{n=1}^{\infty} I_n \right\}$ for $A \subseteq \mathbb{R}$. Properties thereof:

(i) $m^*(\emptyset) = 0, m^*(\{x\}) = 0$

- (ii) $m^*(I) = b a$ where I is an interval with endpoints a < b
- (iii) $m^*(A+x) = m^*(A)$
- (iv) $m^*(\alpha A) = |\alpha| m^*(A)$
- (v) $m^*(A) \le m^*(B)$ if $A \subseteq B$ (is monotone)
- (vi) $m^*(A \cup B) \le m^*(A) + m^*(B)$ if $A \cap B = \emptyset$ (is partly finitely additive)
 - (a) $m^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} m^*(A_n)$ if they are all disjoint from one another (*countably subadditive*, proof in 2015)

 $E \subseteq \mathbb{R}$ is **null** if $m^*(E) = 0$. Also null:

- any subset of a null set
- countable union of null sets
- countable subsets of \mathbb{R} are all null e.g. \mathbb{N}, \mathbb{Q} .
- the **Cantor set** is null and closed. Its two definitions:
 - let $C_0 = [0,1], C_{n+1} = C_n/3 \cup (C_n+2)/3$ i.e. taking out the middle third each time, and $C = \bigcap_{n=1}^{\infty} C_n$

$$-C = \left\{ x \in [0,1] : \exists (a_n)_{n \ge 1} \in \{0,2\}^{\mathbb{N}} \text{ st } x = \sum_{n=1}^{\infty} a_n 3^{-n} \right\}$$

- both are equivalent (kinda annoying to see)
- it has measure 0, by using the set definition
- the **Cantor-Lebesgue function** $\Phi : [0,1] \to [0,1]$ is $\Phi(x) = \sum_{n=1}^{\infty} a_n/2 \cdot 2^{-n}$ where the a_n are defined as above for $x \in C$, and $\Phi(y) = \sup_{x \ge y, x \in C} \Phi(x)$.
 - * this is discussed in detail in 2019Q1c, and is measurable.

a property Q of real numbers holds **almost everywhere** if the set of reals it does not hold on is null.

 $\begin{array}{l} m^* \text{ is } \underbrace{\text{not countably additive on } \mathbb{R}}_{x,y \in A, x \neq y} \xrightarrow{} x - y \notin \mathbb{Q}, \forall x \in [0,1] \exists q \in \mathbb{Q} \text{ st } x + q \in A \text{ taking } \bigcup_{q \in \mathbb{Q} \cap [0,1]} (A - q), \ldots] \end{array}$

 $E \subseteq \mathbb{R}$ is **Lebesgue measurable** if $m^*(A) = m^*(A \cap E) + m^*(A \setminus E)$ for all $A \subseteq \mathbb{R}$ - note $A \setminus E := A \cap (\mathbb{R} \setminus E)$, and we automatically have $m^*(A) \leq m^*(A \cap E) + m^*(A \setminus E)$

let \mathcal{M}_{Leb} be the set of Lebesgue measurable sets. It contains: [proofs, see Capinski & Kopp]

- $\bullet\,$ null sets
- intervals
- $\mathbb{R} \setminus E \in \mathcal{M}_{\text{Leb}}$ if $E \in \mathcal{M}_{\text{Leb}}$

- $\bigcup_{n=1}^{\infty} E_n \in \mathcal{M}_{\text{Leb}}$ if $E_n \in \mathcal{M}_{\text{Leb}}$, and if $E_n \cap E_k = \emptyset$ for all $n \neq k$ then $m^*(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m^*(E_n)$
- open and closed subsets of \mathbb{R} [as open sets a countable union of intervals]

for $E \in \mathcal{M}_{\text{Leb}}$ write $m(E) = m^*(E)$, so m is countably additive (on \mathcal{M}_{Leb}), and m satisfies all the properties of a measure for $A, B, A_n \in \mathcal{M}_{\text{Leb}}$:

- (i) $m^*(\emptyset) = 0, m^*(\{x\}) = 0$
- (ii) $m^*(I) = b a$ where I is an interval with endpoints a < b
- (iii) $m^*(A+x) = m^*(A)$
- (iv) $m^*(\alpha A) = |\alpha| m^*(A)$
- (v) $m^*(A) = m^*(B)$ if $A \subseteq B$ (is monotone)
- (vi) $m^*(A \cup B) = m^*(A) + m^*(B)$ if $A \cap B = \emptyset$ (is partly finitely additive) $\implies m^*(A \setminus B) = m^*(A) m^*(B)$
 - (a) $m^*(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m^*(A_n)$ if they are all disjoint from one another (*partly count-ably additive*)

3 Measure spaces, measurable functions

given a set Ω , $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ is σ -algebra/ σ -field on Ω if :

- $(i) \ \emptyset \in \mathcal{F}$
- (ii) if $E \in \mathcal{F}$ then $\Omega \backslash E \in \mathcal{F}$
- (iii) if $E_n \in \mathcal{F}$ for n = 1, 2, ... then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{F}$ $\implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{F}$

if so, then (Ω, \mathcal{F}) is a **measurable space**, and sets in \mathcal{F} are \mathcal{F} -measurable.

a **measure** on (Ω, \mathcal{F}) is a function $\mu : \mathcal{F} \to [0, \infty]$ st

- (i) $\mu(\emptyset) = 0$
- (ii) $\mu(A) \leq \mu(B)$ if $A \subseteq B, A, B \in \mathcal{F}$
- (iii) $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$ if the E_n are disjoint sets in \mathcal{F}

then $(\Omega, \mathcal{F}, \mu)$ is measure space. a measure μ is finite if $\mu(\Omega) < \infty$, and a probability measure if $\mu(\Omega) = 1$

examples:

- $(\mathbb{R}, \mathcal{M}_{\text{Leb}}, m),$
- the counting measure: $(\Omega, \mathcal{P}(\Omega), \mu = E \mapsto |E|)$ for any set Ω
- $([0,1], \mathcal{M}_{\text{Leb}}|_{[0,1]}, m)$ a probability measure
- $(\Omega, \mathcal{F}, \mathbb{P})$, as defined in probability, and thus a probability measure
- the Lebesgue-Stieltjes measure for $F : \mathbb{R} \to \mathbb{R}$, an increasing function, assumed that $\forall x \ F(x) = \lim_{y \to x^+} F(y)$:

$$-m_F^*(E) = \inf\left\{\sum_{n=1}^{\infty} m_F(J_n) : J_n = (a_n, b_n], E \subseteq \bigcup_{n=1}^{\infty} J_n\right\}$$

- acting on a σ -algebra \mathcal{M}_F containing all intervals, where $m_F(a, b] = F(b) F(a)$
- so, m_F^* acts similarly to m^* except that $m_F^*(a, b) = F(b-) F(a); m_F^*([a, b]) = F(b) F(a-); m_F^*(\{x\}) = 0 \iff F$ is cont at x

useful properties of a measure space $(\Omega, \mathcal{F}, \mu)$:

- (i) for $A, B \in \mathcal{F}$ with $A \subseteq B$, $\mu(A) \leq \mu(B)$ [prove with disjoint union]
- (ii) for a sequence $(A_n) \in \mathcal{F}$ with $A_n \subseteq A_{n+1}$ then $\mu(\bigcup_n A_n) = \lim_{n \to \infty} \mu(A_n)$ [prove with $A'_r = A_r \setminus A_{r-1}$]
- (iii) for a sequence $(A_n) \in \mathcal{F}$ with $A_n \supseteq A_{n+1}$ and $\mu(A_1) < \infty$ then $\mu(\bigcap_n A_n) = \lim_{n \to \infty} \mu(A_n)$ [prove with (ii), take complements, consider $\mu(\Omega)$]

given $\mathcal{B} \subseteq \mathcal{P}(\Omega)$ there is a unique σ -algebra $\mathcal{F}_{\mathcal{B}}$ on Ω generated by \mathcal{B} in the sense that $\mathcal{B} \subseteq \mathcal{F}_{\mathcal{B}}$, and if \mathcal{F} is another σ -algebra on Ω with $\mathcal{B} \subseteq \mathcal{F}$ then $\mathcal{F}_{\mathcal{B}} \subseteq \mathcal{F}$ [like a closure/interior

 $\mathcal{M}_{\mathrm{Bor}}$ is the **Borel** σ -algebra on \mathbb{R} is the algebra on \mathbb{R} generated by the intervals:

- description: "the class of subsets of \mathbb{R} constructable from intervals in a countable number of complements, countable unions, or countable intersections".
- \mathcal{M}_{Bor} is the smallest σ -algebra on \mathbb{R} containing (†)
 - (i) all intervals
 - (ii) (a, ∞) for all $a \in \mathbb{R}$
 - (iii) all closed intervals
 - (iv) all open sets
- $\mathcal{M}_{Bor} \neq \mathcal{M}_{Leb}$ [no need to prove]
- if $E \in \mathcal{M}_{\text{Leb}}$ there exist $A, B \in \mathcal{M}_{\text{Bor}}$ st $A \subseteq E \subseteq B$ and $B \setminus A$ is null (so $E \setminus A$ and $B \setminus E$ are also null) [no need to prove, in textbook]

the **push-forward** σ -algebra of \mathcal{F} by f is $f_*(\mathcal{F}) := \{G \subseteq \mathbb{R} : f^{-1}(G) \in \mathcal{F}\}$ for a function $f: \Omega \to \mathbb{R}$ and a σ -algebra \mathcal{F} . It is a σ -algebra over \mathbb{R} $[f^{-1}(\emptyset) = \emptyset, f^{-1}(\mathbb{R} \setminus G) = \Omega \setminus f^{-1}(G),...]$

a function $f: \Omega \to \mathbb{R}$, given (Ω, \mathcal{F}) is measurable, is \mathcal{F} -measurable

- \iff the set of all intervals $\mathcal{I} \subseteq f_*(\mathcal{F}) \iff \forall$ intervals $I \in \mathbb{R}, f^{-1}(I) \in \mathcal{F}$
- $\begin{array}{ll} \Longleftrightarrow & \mathcal{M}_{\mathrm{Bor}} \subseteq f_*(\mathcal{F}) \iff \mathcal{B} \subseteq f_*(\mathcal{F}) \text{ where } \mathcal{B} \text{ is one of the sets in } (\dagger) \\ & [\text{proof since } \mathcal{I} \text{ is one of the } \mathcal{B}, \text{ and for all of those } \mathcal{B}, \mathcal{B} \subseteq \mathcal{M}_{\mathrm{Bor}}, \text{ and if } \mathcal{B} \subseteq f_*(\mathcal{F}) \text{ so} \\ & \text{ is } \mathcal{F}_{\mathcal{B}} = \mathcal{M}_{\mathrm{Bor}}]. \end{array}$

Various Lebesgue-measurable functions:

- constant functions,
- characteristic functions χ_A of a set $A \iff A$ is measurable
- continuous or monotone functions $f : \mathbb{R} \to \mathbb{R}$
- functions continuous a.e.
- g = f a.e. if $f : \mathbb{R} \to \mathbb{R}$ is measurable
- RVs in probability
- any function that can be explicitly defined
- $f + g, fg, \max(f, g)$ for $f, g : \mathbb{R} \to \mathbb{R}$, both measurable [e.g. $(f + g)^{-1}((a, \infty)) = \bigcup_{q \in \mathbb{Q}} f^{-1}(q, \infty) \cap g^{-1}(a - q, \infty)$ which is measurable]
- $h \circ f$ for f measurable, h continuous is Borel measurable [as if $G \subseteq \mathbb{R}$ is open then $h^{-1}(G)$ is, so $f^{-1}(h^{-1}(G))$ is measurable]

a function $f : \mathbb{R} \to [-\infty, \infty]$ is **measurable**

 $\iff \quad \forall a \in \mathbb{R} \ f^{-1}(a, \infty] \in \mathcal{M}_{\text{Leb}}$

$$\iff \qquad \left(\forall B \in \mathcal{M}_{\mathrm{Bor}} f^{-1}(B) \in \mathcal{M}_{\mathrm{Leb}}\right) \wedge f^{-1}(\{\infty\}) \in \mathcal{M}_{\mathrm{Leb}}$$

 \iff $\arctan \circ f$ is measurable where $\arctan : [-\infty, \infty] \rightarrow [-\pi/2, \pi/2]$ is the inverse tan function.

given a sequence (f_n) of measurable functions $\mathbb{R} \to [-\infty, \infty]$, then the following are measurable:

- $\sup_n f_n$, $\inf_n f_n$ [prove $(\sup_n f_n)^{-1}(a, \infty] = \bigcup_{n \in \mathbb{N}} f_n^{-1}(a, \infty]$ by double incl]
- $\limsup_{n\to\infty} f_n$, $\liminf_{n\to\infty} f_n$ [prove using $\limsup_{n\to\infty} f_n = \inf_m (\sup_{n\ge m} f_n)$]
- $\lim_{n\to\infty} f_n$, if it exists [by \limsup, \liminf]

a function $\phi : \mathbb{R} \to \mathbb{R}$ is simple if it is measurable and takes finitely many real values. e.g.:

- χ_E if $E \in \mathcal{M}_{\text{Leb}}$,
- $\phi + \psi$, $\phi\psi$, $\alpha \cdot \phi$, $\max(\phi, \psi)$, $h \circ \phi$ for ϕ, ψ simple, h any function
- any function of the form $\sum_{j=1}^{n} \beta_j X_{E_j}$ for $\beta_j \in \mathbb{R}, E_j \in \mathcal{M}_{\text{Leb}}$
- step functions [but simple functions are not always step functions]

if $\phi = \sum_{i=1}^{k} \alpha_i \chi_{B_i}$ where ϕ takes non-zero values $\alpha_1, \alpha_2, ..., \alpha_k$ and $B_i = \phi^{-1}(\{\alpha_i\})$ then ϕ is in standard/canonical form. - e.g. the standard from of $\chi_{(0,2)} + \chi_{[1,3]}$ is $1 \cdot \chi_{(0,1)\cup[2,3]} + 2 \cdot \chi_{[1,2)}$ for a measurable function $f : \mathbb{R} \to [0, \infty]$ there is an increasing sequence (ϕ_n) of non-negative simple functions st $f(x) = \lim_{n \to \infty} \phi_n(x)$ for all $x \in \mathbb{R}$.

[3.9, proof: $B_{k,n} = \{x : f(x) \in [k2^{-n}, (k+1)2^{-n})\}$ for $n = 1, 2, ...; k = 0, 1, 2, ..., 4^n - 1$ and $\phi_n(x) = k2^{-n}$ if $x \in B_{k,n}$ for some (unique) k, otherwise 2^n if $f(x) \ge 2^n$]

 $f : \mathbb{R} \to \mathbb{R}$ is measurable \iff there is a sequence (ψ_n) of step functions st $f = \lim \psi_n$ <u>a.e.</u> [textbook]

4 The Lebesgue integral

Definition for non-negative simple functions: for $\phi = \sum_{i=1}^{k} \alpha_i \chi_{B_i}$ (i.e. $\alpha_i > 0$) in standard form,

$$\int_{\mathbb{R}} \phi = \int_{-\infty}^{\infty} \phi(x) dx = \sum_{i=1}^{k} \alpha_i m(B_i)$$

Which is finite $\iff \forall i \ m(B_i) < \infty$. This definition also works for <u>non-negative</u> simple functions <u>not in standard form</u>.

Useful notes [4.1]: $\int (\phi + \psi) = \int \phi + \int \psi$ for ϕ, ψ non-negative simple functions, $\int \alpha \phi = \alpha \int \phi$ for $\alpha \in [0, \infty)$

if $\phi \leq \psi$ pointwise then $\int \phi \leq \int \psi$

Definition for non-negative measurable functions: for $f : \mathbb{R} \to [0, \infty]$

$$\int_{\mathbb{R}} f = \sup\left\{\int_{\mathbb{R}} \phi : \phi \text{ simple}, 0 \le \phi \le f\right\}$$

And its integral over a measurable set $E \subseteq R$ is $\int_E f = \int_{\mathbb{R}} f \chi_E$ if f is defined over all of \mathbb{R} , and otherwise, if $f: E \to [0, \infty]$ then $\int_E f = \int_{\mathbb{R}} \tilde{f}$, where $\tilde{f} = f$ on E and = 0 everywhere else.

f is **integrable** over $E \subseteq \mathbb{R}$ if $\int_E f < \infty$.

Clearly if $f \leq g$, $\int f \leq \int g$, and $\int \alpha f = \alpha \int f$ for $\alpha \geq 0$

MCT v1 [4.2] if (f_n) is an increasing sequence of non-negative measurable functions, and $f = \lim_{n \to \infty} f_n = \sup_n f_n$, then $\int f = \lim_{n \to \infty} \int f_n$.

Proof:

- $\forall n \ f_n \leq f$, so $\sup_n \int f_n \leq \int f$
- for $\lim_{n\to\infty} \int f_n \geq \int f$, we want to find ϕ st $0 \leq \phi \leq f$, $\int \phi \leq \lim_{n\to\infty} \int f_n$, so that, $\lim_{n\to\infty} \int f_n \geq \int f$ as $\int f$ is a supremum.

- defining B_n : for $\alpha \in (0, 1)$,

- * let $B_n = \{x : f_n(x) \ge \alpha \phi(x)\}$, which is measurable, as $f_n \alpha \phi$ is. * $B_n \subseteq B_{n+1}, \bigcup_{n=1}^{\infty} B_n = \mathbb{R}$, cause $\lim_{n \to \infty} B_n = \mathbb{R}$
- * (†) $\alpha \int_{B_n} \phi \leq \int_{\mathbb{R}} f$ as $\alpha \phi \chi_{B_n} \leq f_n \chi_{B_n} \leq f_n$
- given $\phi = \sum_{i=1}^{k} \beta_i \chi_{E_i}$, - $\int_{B_n} \phi = \sum_{i=1}^{k} \beta_i m(E_i \cap B_n) \to \sum_{i=1}^{k} \beta_i m(E_i) = \int_{\mathbb{R}} \phi$ because $\lim_{n \to \infty} B_n = \mathbb{R}$ - so $\alpha \int_{\mathbb{R}} \phi \leq \lim_{n \to \infty} \int_{\mathbb{R}} f_n$ by taking limits in (†) - Then let $\alpha \to 1$ -

Baby MCT [4.3] given f is a non-negative/non-positive (it must have the same sign over all of E) measurable function, (E_n) an increasing sequence of measurable sets, $E = \bigcup_{n=1}^{\infty} E_n$, then f is *integrable* over $E \iff \sup_n \int_{E_n} f < \infty$, and then $\int_E f = \sup_n \int_{E_n} = \lim_{n \to \infty} \int_{E_n}$ Proof: use MCT v1 with $f_n = f\chi_{E_n}$.

Adding integrals [4.4] for non-negative measurable functions $f, g \int (f+g) = \int f + \int g$

Proof: take increasing sequences of simple functions for each of f, g, use MCT v1 and the fact that the integrals of simple functions add properly.

MCT for Series [4.5] For a sequence (g_n) of integrable functions that are all non-negative a.e., and the sum of their integrals is finite, then their sum converges a.e. to an integrable function, and $\int \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} \int g_n$

Agreeing with the Riemann integral [4.6] For a continuous function $f : [a, b] \to [0, \infty)$, the Lebesgue and Riemann integrals agree. Proof: step functions are simple functions, and there is an increasing sequence of step functions with limit f since it is Riemann integrable, so apply the MCT to them.

This is also true for $f : [a, b] \to [-\infty, \infty]$, since f is Riemann integrable $\iff f$ is bounded and continuous a.e., and in such a case it is also Lebesgue measurable. - see notes page 17 for a brief argument.

Definition for all measurable functions: for $f : \mathbb{R} \to [-\infty, \infty]$, let $f_+ = \max(f, 0), f_- = \max(-f, 0)$, so $f = f_+ - f_-, |f| = f_+ + f_-$.

f is **integrable** \iff both f_+, f_- are, and $\int f = \int f_+ - \int f_-$

Useful facts [4.8]:

- 1. f is integrable $\implies |f|$ is integrable
- 2. f is measurable and |f| is integrable \implies f is integrable
- 3. Comparison test:
 - f is measurable, and $|f| \leq g$ for integrable $g \implies f$ is integrable
 - $|f| \ge g \ge 0$ for measurable, non-integrable $g \implies f$ is <u>not</u> integrable
- 4. The integral is a linear operator on integrable functions (when their sums are defined)
- 5. $f \leq g \implies \int f \leq \int g$
- 6. f integrable, f = g a.e. $\implies g$ is integrable, $\int g = \int f$. Note: this means the integral over an interval is the same as that over its closure, etc.
- 7. f integrable $\implies f(x) \in \mathbb{R}$ a.e.
- 8. f integrable, $\int |f| = 0 \implies f = 0$ a.e.

9. f integrable over measurable $E = \bigcup_{n=1}^{\infty} E_n$, for measurable E_n , $\int_E f = \lim_{n \to \infty} \int_{E_n} f$

Proofs: 1), 2) from def of $\int |f|$;

- 3) since $|f| \leq g \implies \int |f| \leq \int g;$
- 4),5) by splitting into +, -;

6) since |f - g| = 0 a.e., so any non-negative step function smaller than |f - g| is 0 a.e., so the integral is 0;

7) by contradiction/ see s2q9;

8) s2q9 or directly since $f_+, f_- \leq |f|$, same argument as 6;

9) by applying Baby MCT to f_+, f_-

Extensions to the Comparison test [4.9]:

- g integrable, h bounded and measurable $\implies hg$ is integrable [prove using $|gh| \leq C|g|$]
- g integrable over $\mathbb{R} \implies$ g integrable over any measurable subset of \mathbb{R}
- h bounded and measurable is integrable over any subset with finite measure.

Fundamental Theorem of Calculus (FTC) [4.1]: if g is a function with a continuous derivative on a closed bounded interval [a, b], then g' is integrable over [a, b] and $\int_a^b g'(x)dx = g(b) - g(a)$

No proof necessary, as Riemann=Lebesgue for such g.

Integration by parts [4.13]: For f, g continuously differentiable [i.e. have continuous derivative] on a closed bounded interval [a, b], then

$$\int_{a}^{b} f(x)g'(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Again, proof by Prelims.

Substitution [4.15]: for a monotonic function $g : I \to \mathbb{R}$ with a continuous derivative, let J = g(I), so J is an interval. A measurable function $f : J \to \mathbb{R}$ is integrable $\iff (f \circ g) \cdot g'$ is integrable over I.

$$\int_{j} f(x)dx = \int_{I} f(g(y))|g'(y)|dy$$

Note neither I nor J must be closed or bounded.

Proof: left out, see Qian 7.4

4.1 Proving a function is integrable

Simplifying the problem for a function f on an interval I:

- note/show that f is measurable
- replace f with |f|, then use 4.8.2

Solving the problem:

- if f and I are bounded, then f is integrable over I
- if I is unbounded, or f is unbounded on I, consider an increasing sequence of intervals (I_n) st. f is bounded on each I_n
 - $-\,$ apply the FTC, integration by parts, or substitution to solve $\int_{I_n} f$
 - then apply the Baby MCT
- use the Comparison test to find a simpler function that is easier to integrate/prove not integrable.

5 Convergence theorems

MCT v2 [5.1]: for a sequence of integrable functions (f_n) with

- (1) $\forall n \ f_n \leq f_{n+1}$ a.e., and
- (2) $\sup_n \int f_n < \infty$, then (f_n) converges a.e. to an integrable function f, and $\int f = \lim_{n \to \infty} \int f_n$

Proof: use 4.8 to ensure (1) is actually everywhere, and f_n is finite everywhere. Then apply the MCT v1 to $f_n - f_1$.

Fatou's Lemma [5.3]: for a sequence of non-negative measurable function (f_n) ,

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n$$

Prove by applying the MCT to $g_r := \inf_{n \ge r} f_n$

Dominated Convergence Theorem (DCT) [5.4]: for a sequence of non-negative measurable function (f_n) st

- 1. $(f_n(x))$ converges a.e. to a limit f(x)
- 2. \exists an integrable function g st $\forall n | f_n(x) | \leq g(x)$ a.e

Then f is integrable, and $\int f = \lim_{n \to \infty} \int f_n$.

Proof: f is measurable, and integrable by comparison, then apply Fatou's lemma twice to show equality of integrals

Bounded Convergence Theorem (BCT) [5.6]: for a bounded interval I, if (f_n) is a sequence of functions integrable on I converging a.e. to f which is bounded by a constant c a.e. for all n.

Then f is integrable on I, and $\int_I f = \lim_{n \to \infty} \int_I f_n$ Proof by DCT.

Beppo Levi Theorem/ Lebesgue's Series Theorem [5.9] for a sequence (g_n) of integrable functions with $\sum_n \int |g_n| < \infty$, then $\sum_n g_n$ converges a.e. to an integrable function, and $\int \sum_n g_n = \sum \int g_n$. Prove by applying MCT for series to positive and negative parts of g_n

Alternate version of Beppo Levi [5.10] for a sequence (g_n) of integrable functions with $\sum_n |g_n|$ integrable, then $\sum_n g_n$ converges a.e. to an integrable function, and $\int \sum_n g_n = \sum \int g_n$. Prove by applying Beppo Levi to $f_k = \sum_{n=1}^k g_n$.

6 Integrals depending on a parameter

Setup: given $f : \mathbb{R}^2 \to \mathbb{R}$, assuming $x \mapsto f(x, y)$ is integrable, we think about $F(y) = \int f(x, y) dx$

Continuous-parameter DCT [6.2]: given I, J are intervals in $\mathbb{R}, f : I \times J \to \mathbb{R}$ is a function with the following properties:

- (1) $\forall y \in J, x \mapsto f(x, y)$ is integrable over I
- (2) $\forall y \in J, \lim_{z \to y} f(x, z) = f(x, y)$ a.e. in $x \in I$ [continuous in y, the **outer parameter**, at almost all x]
- (3) $\exists g: I \to \mathbb{R}$, an integrable function st $\forall y \in J | f(x, y) | \leq g(x)$ at almost all x OR
- (3') $\forall b \in J, \exists J_b \subseteq J, \text{ an open sub-interval of } J \text{ with } b \in J_b, \text{ and } \exists g_b : I \to R \text{ integrable st} \\ \forall y \in J_b | f(x, y) | \leq g(x) \text{ at almost all } x \text{ [implied by (3)]}$

Then, using one of condition (3) or (3'), $F(y) = \int_I f(x, y) dx$ is continuous on J (condition 1 ensures that is is integrable)

Proof: use the normal DCT on $f_n(x) = f(x, y_n)$ for any sequence $y_n \to y$ in J

Differentiating F [6.5]: given I, J are intervals in $\mathbb{R}, f : I \times J \to \mathbb{R}$ is a function with the following properties:

(1) $\forall y \in J, x \mapsto f(x, y)$ is integrable over I

(2)
$$\forall x \in I, y \in J, \frac{\partial f}{\partial u}(x, y)$$
 exists - the derivative in the *outer* parameter

- (3) \exists integrable $g: I \to \mathbb{R}$ st $\forall y \in J |\frac{\partial f}{\partial y}(x, y)| \le g(x)$ at almost all x OR
- (3') $\forall b \in J, \exists J_b \subseteq J, \text{ an open sub-interval of } J \text{ with } b \in J_b, \text{ and } \exists g_b : I \to R \text{ integrable st}$ $\forall y \in J_b |\frac{\partial f}{\partial y}(x, y)| \leq g(x) \text{ at almost all } x \text{ [implied by (3)]}$

Then $F(y) = \int_I f(x,y) dx$ is differentiable on J, and $F'(y) = \int_I \frac{\partial f}{\partial y}(x,y) dx$

Proof: for any fixed $y \in J$, (y_n) a sequence converging to y with $y_n \neq y$, let $g_n(x) = \frac{f(x,y_n) - f(x,y)}{y_n - y}$, which is integrable over I, and converges to $\frac{\partial f}{\partial y}(x, y)$ as $n \to \infty$. The MVT says $\exists \xi \in [y_n, y]$ st $g_n(x) = \frac{\partial f}{\partial y}(x,\xi)$, so by (3) $|g_n(x)| \leq g(x)$ a.e.(x). Thus the DCT is applicable, so $\frac{F(y_n) - F(y)}{y_n - y} = \int_I g_n(x) dx \to \int_I \frac{\partial f}{\partial y}(x, y) dx$ as $n \to \infty$. Since the sequence was arbitrary, $\frac{F(y') - F(y)}{y' - y} = \int_I g_n(x) dx \to \int_I \frac{\partial f}{\partial y}(x, y) dx$ as $y' \to y$

7 Double integrals

for $f : \mathbb{R}^2 \to \mathbb{R}$, f can be integrable on \mathbb{R}^2 , in which case its integral is $\int_{\mathbb{R}^2} f$. This is defined in the same way as integrability over \mathbb{R} , excepting the bits where we compare to the Riemann integral. [Skipping 7.1 to just list the two as actually used]

Tonelli's theorem [7.3]: for $f : \mathbb{R}^2 \to \mathbb{R}$, a measurable function, if either these two is finite, then f, |f| are integrable over \mathbb{R}^2 , and so Fubini's theorem applies to f and |f|.

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| dx \right) dy, \qquad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x,y)| dy \right) dx$$

Fubini's theorem [7.2]: for $f : \mathbb{R}^2 \to \mathbb{R}$, integrable (i.e. over \mathbb{R}^2):

- $x \mapsto f(x, y)$ is integrable for almost all y,
- $F(y) = \int f(x, y) dx$ is integrable (for the y for which it is defined),
- $y \mapsto f(x, y)$ is integrable for almost all x,
- $G(x) = \int f(x, y) dy$ is integrable (for the x for which it is defined)

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy = \int_{\mathbb{R}^2} f(x, y) d(x, y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx$$

Changing variables [7.13]: Let $f : E \to \mathbb{R}$, for $E \subseteq \mathbb{R}^2$, and $T : E' \to E$ an injective differentiable function, and $E' \subseteq \mathbb{R}^2$ an open set.

f is integrable over $E \iff (f \circ T) |\det J_T|$ is integrable over E', where J_T is the Jacobian matrix of T.

So if
$$T: (u, v) \in E' \mapsto (x, y) \in E$$

$$\frac{\partial(x,y)}{\partial(u,v)} := \det J_T = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial v}$$

So if either of $f, (f \circ T) |\det J_T|$ is integrable,

$$\int_{E} f(x,y)d(x,y) = \int_{E'} f(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| d(u,v)$$

Changing to polar coordinates [7.9]: Same setup as before, but specifically $E' = \{(r, \theta) : r \ge 0, \theta \in [0, 2\pi], (r \cos \theta, r \sin \theta) \in E\}$, and $T(r, \theta) = (r \cos \theta, r \sin \theta)$, so $\frac{\partial(x, y)}{\partial(u, v)} = r$, so

$$\int_{E} f(x,y)d(x,y) = \int_{E'} f(r\cos\theta, r\sin\theta)r\,d(r,\theta)$$

8 L^p Spaces

Let \mathcal{L}^p be the set of all measurable functions on \mathbb{R} st $|f|^p$ is integrable, and $\mathcal{N} = \{f \in \mathcal{L}^p : f = 0 \text{ a.e.}\}$, the equivalence class [0] under the relation $f \sim g \implies f = g$ a.e.

Let $L^p = \mathcal{L}^p / \mathcal{N}$, which is a vector space, as $(|f + g|)^p \le (2 \max(|f|, |g|)^p = 2^p \max(|f|^p, |g|^p) \le 2^p (|f|^p + |g|^p).$

Define $||f||_p = (\int |f|^p)^{1/p}$, which is a norm on L^p for $p \ge 1$. It clearly satisfies $||f||_p = 0 \iff f \in \mathcal{N}$, and $||\alpha f||_p = \alpha ||f||_p$ for all $p \ge 0$

Only for $p \ge 1$ does $||f + g||_p \le ||f||_p + ||g||_p$, which is **Minkowski's Inequality** [8.1]

- if either f, g is in \mathcal{N} , then it is trivial
- so let $\alpha := \|f\|_p > 0, \beta := \|g\|_p > 0$
- $t \mapsto t^p$ is a convex and continuous function on $[0, \infty)$ [by looking at second derivative], so $(\lambda s + (1 \lambda)t)^p \leq \lambda s^p + (1 \lambda)t^p$
- Apply this with $\lambda = \frac{\alpha}{\alpha+\beta}$, $s = \frac{|f(x)|}{\alpha}$, $t = \frac{|g(x)|}{\beta}$, so $\left(\frac{|f| + |g|}{\alpha+\beta}\right)^p \le \frac{1}{\alpha+\beta} \left(\frac{|f|^p}{\alpha^{p-1}} + \frac{|g|^p}{\beta^{p-1}}\right)$ for all x.
- We also have $\left(\frac{|f+g|}{\alpha+\beta}\right)^p \leq \frac{|f|^p}{\alpha^{p-1}} + \frac{|g|^p}{\beta^{p-1}}$ as $|f+g| \leq |f| + |g|$
- So by integrating we get $\frac{\left(\|f+g\|_p\right)^p}{(\alpha+\beta)^p} \le \frac{1}{\alpha+\beta} \left(\frac{\left(\|f\|_p\right)^p}{\alpha^{p-1}} + \frac{\left(\|g\|_p\right)^p}{\beta^{p-1}}\right) = \frac{\alpha+\beta}{\alpha+\beta} = 1$
- And if we rearrange and take p-th roots, we get $||f + g||_p \le (\alpha + \beta) = ||f||_p + ||g||_p$

Hölder's Inequality [8.2]: Let $p, q \in (1, \infty)$ with 1/p + 1/q = 1, $f \in L^p, g \in L^q$. Then $fg \in L^1$ and $||fg||_1 \leq ||f||_p ||g||_q$. Note if p = q = 2, this is the Cauchy-Schwartz inequality.

- $t \mapsto \log t$ is concave on $[0, \infty)$, because its second derivative $-t^{-2}$ is negative.
- So, $\frac{1}{p}\log s + \frac{1}{q}\log t \le \log(\frac{s}{p} + \frac{t}{q})$.
- Exponentiating gives us that $s^{1/p}t^{1/q} \leq \frac{s}{p} + \frac{t}{q}$.

• Let
$$s := \left(\frac{|f|}{\|f\|_p}\right)^p$$
, $t := \left(\frac{|g|}{\|g\|_q}\right)^q$
• Thus, $\frac{|f|}{\|f\|_p} \frac{|g|}{\|g\|_p} \le \frac{|f|^p}{p(\|f\|_p)^p} + \frac{|g|^q}{q(\|g\|_q)^q}$
• Integrating gives us $\frac{\|fg\|_1}{\|f\|_p \|g\|_p} \le \frac{(\|f\|_p)^p}{p(\|f\|_p)^p} + \frac{(\|g\|_q)^q}{q(\|g\|_q)^q} = \frac{1}{p} + \frac{1}{q} = 1$

• So
$$||fg||_1 \le ||f||_p ||g||_p$$
, so $fg \in L^1$.

Strict inclusion of L^p spaces in others [8.3]: For p_1, p_2 st $1 \le p_1 < p_2 < \infty$ (strict inequality), if $f \in L^{p_2}(a, b)$, then:

- $f \in L^{p_1}(a, b)$
- $||f||_{p_1} \le (b-a)^{1/p_1-1/p_2} ||f||_{p_2}$

if $f_n \in L^{p_2}(a, b)$ and $||f_n||_{p_2} \to 0$, then $||f_n||_{p_1} \to 0$

Proof: apply Hölder's Inequality to $|f|^{p_1}$ and $\chi_{(a,b)}$ with $p = p_2/p_1, q = p_2/(p_2 - p_1)$, so $|f|^{p_1}\chi_{(a,b)} \in L_1$ and $|||f|^{p_1}\chi_{(a,b)}||_1 = \int |f|^{p_1} \leq (\int |f|^{p_2})^{p_1/p_2}(b-a)^{(p_2-p_1)/p_2}$, and then take the p_1 -th root, to get $||f||_{p_1} \leq (b-a)^{1/p_1-1/p_2} ||f||_{p_2}$.

This only works for spaces of finite measure - e.g. not $(1,\infty)$

 L^p is a complete measure space [8.5]: for $p \in [1, \infty)$, (f_n) a Cauchy sequence in \mathcal{L}^p - i.e. $\forall \varepsilon > 0 \exists N \ m, n \ge N \implies ||f_n - f_m||_p < \varepsilon$. Then $\exists f \in \mathcal{L}^p$ st

- 1. a subsequence (f_{n_k}) of (f_n) exists st $\lim_{k\to\infty} f_{n_k}(x) = f(x)$ a.e.
- 2. $\lim_{n \to \infty} \|f_n f\|_p = 0$

So L^p is a complete measure space.

Proof: see notes, since it's quite detailed

Egorov's Theorem [8.7]: Suppose that $f_n \to f$ a.e., and E is a measurable set with $m(E) < \infty$, and $\varepsilon > 0$. Then, there is a measurable subset $F \subseteq E$ with $m(E \setminus F) < \varepsilon$ st $f_n \to f$ uniformly on F - i.e., $||f_n - f||_{L^p(F)} \to 0$ for all $p \ge 1$

[No proof]

Sequence of step functions [8.8] if $f \in L^p(\mathbb{R})$ where $p \ge 1$, then there is a sequence of step functions ϕ_n st $\lim_{n\to\infty} \|f - \phi_n\|_p = 0$

8.1 Fourier transforms

Given $f \in \mathcal{L}^1(\mathbb{R})$, the Fourier transform of f is the function $\widehat{f} : \mathbb{R} \to \mathbb{C}$ as follows:

$$\widehat{f}(s) = \int_{\mathbb{R}} f(x) e^{-isx} dx$$

Properties of the Fourier transform [8.9]

- 1. $\forall s \ |\hat{f}(s)| \leq \|f\|_1$ because $|\hat{f}(s)| = |\int_{\mathbb{R}} f(x)e^{-isx}dx| \leq \int_{\mathbb{R}} |f(x)e^{-isx}|dx = \int_{\mathbb{R}} |f(x)|dx = \|f\|_1$
- 2. \hat{f} is continuous by applying the continuous-parameter DCT [6.2] with g(x) = |f(x)|, which is integrable.
- 3. Riemann-Lebesgue lemma: $\hat{f}(s) \to 0$ as $s \to \pm \infty$
 - for $f = \chi_{(a,b)}$, $\widehat{f}(s) = \frac{i}{s}(e^{-isb} e^{-isa}) \to 0$ as $s \to \pm \infty$
 - thus it works for step functions, since the integral is linear.
 - for general $f \in \mathcal{L}^1(\mathbb{R})$, $\varepsilon > 0$, by 8.8 there is a step function φ st $||f \varphi||_1 < \varepsilon$, and by the point above $\exists K > 0$ st $|\widehat{\varphi}(s)| < \varepsilon$ whenever |s| > K.
 - Then, $|\widehat{f}(s)| \leq |\widehat{f}(s) \widehat{\varphi}(s)| + |\widehat{\varphi}(s)| \leq ||f \varphi||_1 + |\widehat{\varphi}(s)| \leq 2\varepsilon$ when |s| > K
- 4. given $g(x) = xf(x), g \in \mathcal{L}^1(\mathbb{R})$, then \widehat{f} is differentiable everywhere on \mathbb{C} , and $(\widehat{f})'(s) = -i\widehat{g}(s)$
 - by applying [6.5] with |g| as the dominating function.
- 5. if f has cont. derivative $f' \in \mathcal{L}^1(\mathbb{R})$, then the Fourier transform of f' is $is \widehat{f}(s)$
 - by integrating by parts over intervals $[a_n, b_n]$ with $a_n \to -\infty, b_n \to \infty$, so $f(a_n) \to 0, f(b_n) \to 0$

9 Absolutely Continuous Functions

we want a class \mathcal{A} of functions on an interval [a, b] st

- 1. if $F \in \mathcal{A}$ then F is differentiable a.e., $F' \in L^1(a, b)$, and $\int_a^x F'(y) dy = F(x) F(a)$ for all $x \in [a, b]$
- 2. if $f \in L^1(a, b)$ and $F(x) := \int_a^x f(y) dy$ for $x \in [a, b]$, then $F \in \mathcal{A}$ and F' = f a.e.

Thus, this class of functions satisfies the FTC "in both directions", and is the class of functions of the form $F(x) := c + \int_a^x f$ for some $f \in L^1(a, b), c \in \mathbb{R}$.

It turns out, by two theorems that go unproved, that \mathcal{A} is also equivalent to the set of functions that are absolutely continuous on [a, b]:

A function $F: I \to \mathbb{R}$ is **absolutely continuous** on an interval I if $\forall \varepsilon > 0, \exists \delta > 0$ st $(\forall n \in \mathbb{N}, \text{ disjoint subintervals of } I(a_r, b_r) \text{ for } r \in \{1...n\} \text{ with } \sum_{r=1}^n (b_r - a_r) < \delta) \implies$

$$\sum_{r=1}^{n} |F(b_r) - F(a_r)| < \varepsilon$$

10 Integrable functions

 $x^{-a}, (1, \infty)$ for a > 1 by Baby MCT

 $x^a, (0,1)$ for a > -1 by Baby MCT

 $f(x) = \begin{cases} x & x \text{ rational} \\ 0 & x \text{ irrational} \end{cases}, \mathbb{R} \text{ is measurable, and so has integral } 0$

 $\sin(1/x), (0, 1]$ as both are bounded

 $x^n e^{-x}, [0, \infty)$ for $n \in \mathbb{N}$ (i.e. incl e^{-x}) since $\exists a_n \in \mathbb{R}$ st $\forall x \ge a_n e^{x/2} \ge x^n$, so on $(0, a_n)$ is is bounded on bounded, and on $[a_n, \infty)$, compare to $e^{-x/2}$, and use Baby MCT on that.

 $1/\sqrt{x}, (0, 1]$ by Baby MCT

 $(\log x)e^{-x}, (0, \infty)$ by splitting to (0, 1] and $[1, \infty)$, comparing to $1/\sqrt{x}$ and xe^{-x} resp.

 $x^{a} \ln x, (1, \infty)$ for a < -2 by comparison to x^{a+1} , and for $a \in [-2, 1)$ by the Baby MCT manually

- $\sqrt{\csc x}, (0, \pi)$ by splitting to $[0, 1], [1, \pi 1], [\pi 1, \pi]$ on which it is bdd by $\sqrt{2/x}$, bounded on a bounded interval, and then by symmetry to [0, 1]
- $e^{-x} \sin x, (0, \infty)$ by the DCT: integrate by parts on $(0, n\pi)$, and find the limit of those (bound provided by e^{-x})

 $x^k \log^2 x, (0, 1)$ or $e^{ku} u^2, (1, e)$ by integration by parts

 e^{-x^2} , \mathbb{R} by comparison to e^{-x} for $x \ge 1$, boundedness for [0,1] and symmetry for x < 0, or indeed by bounding by $2/(2+x^2)$

 e^{-x^2}/\sqrt{x} , [0,1] by taking its Taylor series and integrating terms, then using Beppo Levi

 $\frac{x^2}{e^{x^2}-1}$, $(0,\infty)$ or $e^{-x^2/2}$, $(0,\infty)$ since it is $\leq 2/(2+x^2)$ by looking at the Taylor series

 $2/(2+x^2), (0,\infty)$ by the MCT and the arctan substitution.

11 Non-integrable functions

 $\tan x, (0, \pi/2)$ by the Baby MCT cause the integral on $(0, \pi/2 - 1/n)$ tends to ∞

 $\begin{cases} -1^n/n & x \in [n, n+1) \\ 0 & x < 1 \end{cases}$ cause positive and negative parts have infinite integrals

 $x^a \log x, [1, \infty)$ for $a \ge 0$ by comparison to $\log x$, and for $a \in [-1, 0]$ by the Baby MCT

 $\log x, [1, \infty)$ by the Baby MCT

 $\sin x/x$, $\cos x(1+x)$ or similar by 4.10.5 - i.e. integrate over π -long regions and show the sum over those is infinite

 $\sin 1/x$, $[1, \infty)$ by sheet 2 Q10 part x

12 Useful integrals

[Not proofs of integrability]

 $\int \frac{f'}{f} = \ln |f(x)| + C$ $\sin x \ge \frac{2}{\pi} x \text{ on } [-\pi, \pi]$