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1 Banach spaces

Let 𝑋 be a vector space over the field F = R or C.

‖ · ‖ : 𝑋 → R is a function if:

� ∀𝑥 ∈ 𝑋 ‖𝑥‖ ≥ 0, and ‖𝑥‖ = 0 ⇐⇒ 𝑥 = 0

� ‖𝜆𝑥‖ = |𝜆 |‖𝑥‖

� ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖

a pair (𝑋, ‖ · ‖) is a normed space.

every norm ‖ · ‖ induces a metric 𝑑 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖, so everything from Part A Metric spaces also applies.

Notes on Part A content:

� just translate 𝑑 to ‖ · ‖, but ensure that you don’t confuse norms.

� Cauchy sequence: ∀𝜀 > 0 ∃𝑁 st ∀𝑛, 𝑚 ≥ 𝑁 ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜀

� equivalent norms...

– so equiv => equal banach, but two equiv norms are not necessarily both hilbert spaces

� subspace is a normed space by restricting the norm

A Banach space is a complete normed vector space - i.e. every Cauchy sequence in 𝑋 converges.

Given (𝑋, ‖ · ‖𝑋 ) is a Banach space, and 𝑌 ⊂ 𝑋 is a subspace, (𝑌, ‖ · ‖𝑋 ) is a Banach space ⇐⇒ 𝑌 is closed in 𝑋

An inner product space (𝑋, < ·, · >) is called a Hilbert space if it is complete wrt to the norm ‖𝑥‖ = √
< 𝑥, 𝑥 > (more detail in

FA2)

Thus, Hilbert space =⇒ Banach space =⇒ complete metric space.

1.1 Examples of metric spaces

Given 𝑝 ∈ [1,∞]:

(R𝑛, ‖ · ‖ 𝑝) or (C𝑛, ‖ · ‖ 𝑝), where

‖𝑥‖ 𝑝 :=

(∑︁
𝑖

|𝑥𝑖 |𝑝
)1/𝑝

for 1 ≤ 𝑝 < ∞

‖𝑥‖∞ := sup
𝑖

|𝑥𝑖 |

sequence spaces: (ℓ𝑝 , ‖ · ‖ 𝑝), where

ℓ𝑝 :=

{
(𝑥 𝑗 ) 𝑗∈N :

∞∑︁
𝑗=1

|𝑥 𝑗 |𝑝 < ∞
}

for 1 ≤ 𝑝 < ∞

ℓ∞ :=
{
(𝑥 𝑗 ) 𝑗∈N : (𝑥 𝑗 ) is a bounded sequence

}
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‖𝑥‖ℓ𝑝 :=

( ∞∑︁
𝑗=1

|𝑥 𝑗 |𝑝
)1/𝑝

for 1 ≤ 𝑝 < ∞

‖𝑥‖ℓ∞ := sup
𝑗

|𝑥 𝑗 |

function spaces: (𝐿 𝑝 (Ω), ‖ · ‖𝐿𝑝 )

given Ω ⊆ R is an interval/a measurable subset of R𝑛, consider first:

L 𝑝 :=

{
𝑓 : Ω → R measurable st

ˆ
Ω

| 𝑓 |𝑝𝑑𝑥 < ∞
}
for 1 ≤ 𝑝 < ∞

L∞ := { 𝑓 : Ω → R measurable st ∃𝑀 | 𝑓 | < 𝑀 a.e.}

(note that we only consider measurable functions and the Lebesgue integral/measure so no need to worry about integrability)

Their norms are:

‖ 𝑓 ‖𝐿𝑝 :=

(ˆ
Ω

| 𝑓 |𝑝𝑑𝑥
)1/𝑝

for 1 ≤ 𝑝 < ∞

‖ 𝑓 ‖𝐿∞ := ess sup | 𝑓 | := {inf 𝑀 : | 𝑓 | ≤ 𝑀 a.e.}

These two functions are only actually norms on 𝐿 𝑝 (Ω) := L 𝑝/∼ equipped with ‖ · ‖𝐿𝑝 , where 𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = 𝑔 a.e.

bounded functions

cont bounded functions

cont functions on compact sets

products

sum of subspaces

quotient spaces

completeness

of various spaces

results for completeness

NORMS

Holder’s inequality:....

2 Bounded linear operators

Given (𝑋, ‖ · ‖𝑋 ), (𝑌, ‖ · ‖𝑌 ), 𝑇 : 𝑋 → 𝑌 ; 𝑇 is a bounded linear operator if 𝑇 is linear and ∃𝑀 ∈ R st ∀𝑥 ∈ 𝑋 ‖𝑇𝑥‖𝑌 ≤ 𝑀 ‖𝑥‖𝑋 .

𝐿 (𝑋,𝑌 ) := {𝑇 : 𝑋 → 𝑌 | 𝑇 is a bounded linear operator}, with the operator norm ‖𝑇 ‖𝐿 (𝑋,𝑌 ) := inf{𝑀 : ∀𝑥 ∈ 𝑋 ‖𝑇𝑥‖𝑌 ≤ 𝑀 ‖𝑥‖𝑋 }
is a normed space.

‖𝑇 ‖𝐿 (𝑋,𝑌 ) = sup
𝑥∈𝑋,𝑥≠0

‖𝑇𝑥‖
‖𝑥‖ = sup

𝑥∈𝑋, ‖𝑥 ‖=1
‖𝑇𝑥‖ = sup

𝑥∈𝑋, ‖𝑥 ‖≤1
‖𝑇𝑥‖

and ‖𝑇𝑥‖ ≤ ‖𝑇 ‖‖𝑥‖. Note 𝑇 is not actually a bounded function.

Given 𝑇 is a linear function between normed spaces, TFAE: 𝑇 is Lipschitz cont, 𝑇 is cont, 𝑇 is cont at 0 and 𝑇 ∈ 𝐿 (𝑋,𝑌 )

𝐿 (𝑋,𝑌 ) is a Banach space

composition of blos is a BLO
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3 Finite dimensiona normed spaces

all norms on R𝑚 are equivalent, and all norms on finite dimenionsal spaces are equivalent

if 𝑇 : 𝑋 → 𝑌 is a linear map between normed spaces, and 𝑋 is fin-dim, then 𝑇 is a BLO.

An 𝑚-dimensional normed space (𝑋, ‖ · ‖) is homeomorphic to F𝑚.

every finite dimensional normed space is complete, because the F𝑚 are ∀𝑚, and so are finite dimensional subspaces of normed
spaces.

TFAE:

1. dim(𝑋) < ∞

2. 𝑌 ⊂ 𝑋 bounded and closed =⇒ 𝑌 compact

3. 𝑆 := {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1} is compact

4 Density & Stone-Weierstrass

𝐷 ⊂ 𝑋 is dense if

𝐷 = 𝑋 ⇐⇒ ∀𝑥 ∈ 𝑋 ∃(𝑦𝑛) ∈ 𝐷N st 𝑦𝑛 → 𝑥 as 𝑛→ ∞
⇐⇒ ∀𝑥 ∈ 𝑋 ∀𝜀 > 0 ∃𝑦 ∈ 𝐷 ‖𝑥 − 𝑦‖ < 𝜀

If 𝑌 is a dense subspace of (𝑋, ‖ · ‖𝑋 ) and (𝑍, ‖ · ‖𝑍 ) is a Banach space, then 𝑇 ∈ 𝐿 (𝑌, 𝑍) has a unique extension 𝑇 ∈ 𝐿 (𝑋, 𝑍).

We now consider a compact subset 𝐾 ⊆ R𝑛, and 𝐶 (𝐾) = 𝐶 (𝐾,R), the space of continuous real-valued functions, with the sup
norm.

𝐷 ⊆ 𝐶 (𝐾) separates points if ∀𝑝, 𝑞 ∈ 𝐾, 𝑝 ≠ 𝑞: ∃𝑔 ∈ 𝐷 st 𝑔(𝑝) ≠ 𝑔(𝑞) or ∃𝑔 ∈ 𝐷 st 𝑔(𝑝) = 0 and 𝑔(𝑞) = 1

𝐷 ⊆ 𝐶 (𝐾) is a linear sublattice if 𝑓 , 𝑔 ∈ 𝐷 =⇒ max( 𝑓 , 𝑔),min( 𝑓 , 𝑔) ∈ 𝐷 or equivalently if 𝑓 ∈ 𝐷 =⇒ | 𝑓 | ∈ 𝐷

Stone-Weierstrass w/ lattices: if 𝐿 is a linear sublattice, contains the constant functions, and separates points in 𝐾, then 𝐿 is
dense in 𝐶 (𝐾)

Lemma for proof: for any 𝑓 ∈ 𝐶 (𝐾), 𝐿 ⊆ 𝐶 (𝐾) containing the constant functions, separates points, ∀𝑝, 𝑞 ∈ 𝐾 ∃ 𝑓𝑝,𝑞 ∈ 𝐿 st
𝑓𝑝,𝑞 (𝑝) = 𝑓 (𝑝) and 𝑓𝑝,𝑞 (𝑞) = 𝑓 (𝑞), and ∀𝜀 > 0 ∃an open neighbourhood 𝑈 𝜀

𝑝,𝑞 of {𝑝, 𝑞} in 𝐾 st | 𝑓 − 𝑓𝑝,𝑞 | < 𝜀 on 𝑈 𝜀
𝑝,𝑞

Polynomial approximation theorem: the space of polynomials is dense (i.e. under uniform convergence) in 𝐶 (𝐾).

𝐴 ⊆ 𝐶 (𝐾) is a subalgebra if 𝐴 contains the constant functions and 𝑓 , 𝑔 ∈ 𝐴 =⇒ 𝑓 · 𝑔 ∈ 𝐴

A closed subalgebra of 𝐶 (𝐾) is a linear sublattice [4.7]

Stone-Weierstrass for subalgebras: If 𝐴 is a sublagebra which separates points, 𝐴 is dense in 𝐶 (𝐾)

Generalisatation of Dini’s theorem: Given 𝐾 ⊆ 𝑀 is a compact subset of a metric space (𝑀, 𝑑) and 𝑔𝑛 : 𝐾 → R is a decreasing
sequence of continuous functions, converging pointwise to 0. Then 𝑔𝑛 → 0 uniformly. [4.8]

for any 1 ≤ 𝑝 < ∞, and any compact 𝐾 ⊆ R𝑛, the space 𝐶∞ (𝐾) of smooth functions is dense in 𝐿 𝑝 (𝐾) [4.9, no proof]

5 Separability

A normed space (𝑋, ‖ · ‖) is separable if ∃𝐷 ⊆ 𝑋 which is countable and dense in 𝑋.

Separability is closed under equivalence of norms and isometric isomorphism.

Every finite dimensional normed space is separable.

E.g.:(ℓ∞, ‖ · ‖∞) and 𝐿∞ (Ω) for any non-empty Ω ⊆ R𝑛 are inseparable.

Given: (𝑋, ‖ · ‖𝑋 ) is a normed space, 𝑌 ⊆ 𝑋 a subspace (with norm ‖ · ‖𝑋 ), if 𝐷 is dense in (𝑌, ‖ · ‖𝑋 ) and 𝑌 is dense in (𝑋, ‖ · ‖𝑋 ),
then 𝐷 is dense in 𝑋.

IF there is a countable set 𝑆 st span(𝑆) is dense in a normed space 𝑋, then 𝑋 is separable.

𝐶 (𝐾) and 𝐿 𝑝 (𝐾) are separable for any compact set 𝐾 ⊆ R𝑛, ℓ𝑝 (F) is separable, all for 1 ≤ 𝑝 < ∞

If (𝑋, ‖ · ‖𝑋 ) is separable and 𝑌 is a subspace of 𝑋, then (𝑌, ‖ · ‖𝑋 ) is separable
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6 Hahn-Banach

The dual space of a normed space (𝑋, ‖ · ‖) is 𝑋∗ := 𝐿 (𝑋, F) with the operator norm ‖ 𝑓 ‖𝑋∗ := sup𝑥∈𝑋
| 𝑓 (𝑥) |
‖𝑥 ‖ . Note that it is

always complete, and ∀ 𝑓 ∈ 𝑋∗, 𝑥 ∈ 𝑋 | 𝑓 (𝑥) | ≤ ‖ 𝑓 ‖‖𝑥‖

Theorem 1. Hahn-Banach for bounded extension

Given a real/complex normed space 𝑋, a subspace 𝑌 ⊂ 𝑋, 𝑓 ∈ 𝑌 ∗, there is an extension 𝐹 ∈ 𝑋∗ of 𝑓 - i.e. 𝐹 |𝑌 = 𝑓 , ‖𝐹‖𝑋∗ = ‖ 𝑓 ‖𝑌 ∗ .

Note that we already have ‖𝐹‖𝑋∗ ≥ ‖ 𝑓 ‖𝑌 ∗ , as 𝑌 ⊂ 𝑋, so all we need to prove is 𝐹 (𝑥) ≤ 𝑝(𝑥) := ‖ 𝑓 ‖‖𝑥‖.

We generalise this by considering all 𝑝 that are sublinear - i.e. 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) and 𝑝(𝜆𝑥) = 𝜆𝑝(𝑥) for 𝜆 ≥ 0. Thus:

Theorem 2. real Hahn-Banach for sublinear functions

Given a normed space 𝑋, a subspace 𝑌 ⊂ 𝑋 and 𝑝 : 𝑋 → R sublinear, with 𝑓 ∈ 𝑌 ∗ st 𝑓 (𝑦) ≤ 𝑝(𝑦) ∀𝑦 ∈ 𝑌 , then there is an
extension 𝐹 ∈ 𝑋∗ of 𝑓 st ∀𝑥 ∈ 𝑋 𝐹 (𝑥) ≤ 𝑝(𝑥)

Proof. if 𝑋 is inseparable, not on the course. If it is, see notes, using the intermediate lemma for the case 𝑋 = span(𝑌 ∪ {𝑥0} �

Applications

∀𝑥 ∈ 𝑋\{0}, where (𝑋, ‖ · ‖) is a normed space, ∃ 𝑓 ∈ 𝑋∗with ‖ 𝑓 ‖ = 1, st 𝑓 (𝑥) = ‖𝑥‖.

On a normed space (𝑋, ‖ · ‖):

� ∀𝑥 ∈ 𝑋 : ‖𝑥‖𝑋 = sup 𝑓 ∈𝑋∗ , ‖ 𝑓 ‖𝑋∗=1 | 𝑓 (𝑥) |

� ∀ 𝑓 ∈ 𝑋∗ : ‖ 𝑓 ‖𝑋∗ = sup𝑥∈𝑋, ‖𝑥 ‖𝑋=1 | 𝑓 (𝑥) |

For any 𝑥 ≠ 𝑦 in a normed space there is a linear functional 𝑓 ∈ 𝑋∗ that separates them, so 𝑓 (𝑥) ≠ 𝑓 (𝑦).

If 𝑓 : 𝑋 → F, 𝑓 ≠ 0 is linear for a normed space 𝑋, then ∀𝑥0 ∈ 𝑋 with 𝑓 (𝑥0) ≠ 0, span(ker( 𝑓 ) + {𝑥0}) = 𝑋

we can separate points from closed subspaces: for a proper closed subspace 𝑌 ⊆ 𝑋 a Banach space, then ∀𝑥 ∈ 𝑋\𝑌 ∃ 𝑓 ∈ 𝑋∗ with
‖ 𝑓 ‖ = 1 st 𝑓 |𝑌 = 0 and 𝑓 (𝑥) = dist(𝑥,𝑌 ) > 0.

the annihilator of 𝐴 ⊆ 𝑋 is 𝐴◦ := { 𝑓 ∈ 𝑋∗ : 𝑓 |𝐴 = 0}, and for 𝑇 ⊆ 𝑋∗, 𝑇◦ := {𝑥 ∈ 𝑋 : ∀ 𝑓 ∈ 𝑇, 𝑓 (𝑥) = 0} = ⋂
𝑓 ∈𝑇 ker( 𝑓 )

In a normed space (𝑋, ‖ · ‖):

� for 𝑆 ⊆ 𝑋, span(𝑆) is dense ⇐⇒ 𝑆◦ = {0} ⊆ 𝑋∗

� for 𝑇 ⊆ 𝑋∗, span(𝑇) is dense in 𝑋∗ =⇒ 𝑇◦ = {0} ⊆ 𝑋.

for any 𝐴 ⊆ 𝑋 normed, 𝐴 = (𝐴◦)◦

7 Dual spaces, second duals & completion

for 𝑓 : 𝑋 → F, linear, on a normed space 𝑋, ker( 𝑓 ) is closed ⇐⇒ 𝑓 ∈ 𝑋∗.

Riesz Representation theorem: for a Hilbert space 𝑋, the map 𝜄 : 𝑋 → 𝑋∗ defined by 𝜄(𝑥) (𝑦) = 〈𝑥, 𝑦〉 is an isometric isomorphism.
[no proof]

Dual spaces of specific examples: we characterise them by isometric isomorphism to a known space.

� 𝐿 𝑝 for 1 ≤ 𝑝 < ∞: let 𝑞 ∈ (1,∞] st 1/𝑝 + 1/𝑞 = 1. Then (𝐿 𝑝 (Ω))∗ � 𝐿𝑞 (Ω), and the bijective linear map is 𝐿 : 𝐿𝑞 (Ω) →
(𝐿 𝑝 (Ω))∗ where 𝐿 ( 𝑓 ) = 𝑔 ↦→

´
Ω
𝑓 · 𝑔 d𝑥 ∈ R.

� ℓ𝑝 (R) for 1 ≤ 𝑝 < ∞: let 𝑞 ∈ (1,∞] st 1/𝑝 + 1/𝑞 = 1. Then (ℓ𝑝 (R))∗ � ℓ𝑞 (R), and the bijective linear map is

𝐿 : ℓ𝑞 (R) → (ℓ𝑝 (R))∗ where 𝐿 (𝑥) = 𝑦 ↦→
∞∑
𝑗=1
𝑥 𝑗 𝑦 𝑗 ∈ R.

The second dual of a normed space 𝑋 is 𝑋∗∗, which exists as the dual space is itself a normed space.

𝑖 : 𝑋 → 𝑋∗∗ defined by 𝑖(𝑥) ( 𝑓 ) := 𝑓 (𝑥) is an isometric linear map.

𝑋 is reflexive if 𝑖(𝑋) = 𝑋∗∗ (normally it is a proper subspace) - e.g. ℓ𝑝 , 𝐿 𝑝 for 1 < 𝑝 < ∞

𝑋 is isometrically isomorphic to 𝑖(𝑋), which is a dense subspace of the Banach space (𝑖(𝑋), ‖ · ‖𝑋∗∗ ), so we can consider any
non-complete normed space as a dense subspace of a Banach space - this is the completion of 𝑋.
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Dual operators

for any linear map 𝑇 : 𝑋 → 𝑌 for vector spaces 𝑋,𝑌 over the same field, and 𝑋 ′ := { 𝑓 : 𝑋 → F linear}, then 𝑇 ′ : 𝑌 ′ → 𝑋 ′ is the
dual map of 𝑇 , defined by 𝑇 ′( 𝑓 ) = 𝑥 ↦→ 𝑓 (𝑇 (𝑥))
Given 𝑋,𝑌 are normed spaces, and 𝑇 ∈ 𝐿 (𝑋,𝑌 ), the dual map is well-defined and 𝑇 ′ ∈ 𝐿 (𝑌 ∗, 𝑋∗), and ‖𝑇 ′‖𝐿 (𝑌 ∗ ,𝑋∗) = ‖𝑇 ‖𝐿 (𝑋,𝑌 )

8 Spectral theory

𝑇 ∈ 𝐿 (𝑋) is invertible if it is bijective (so has an algebraic inverse, which might not be continuous), and 𝑇−1 ∈ 𝐿 (𝑋)
If 𝑇 is algebraically invertible, then it is invertible/𝑇−1 ∈ 𝐿 (𝑋) ⇐⇒ ∃𝛿 > 0 st ∀𝑥 ∈ 𝑋 ‖𝑇𝑥‖ ≥ 𝛿‖𝑥‖.
On a Banach space 𝑋, for 𝑇 ∈ 𝐿 (𝑋) st ∃𝛿 > 0 st ∀𝑥 ∈ 𝑋 ‖𝑇𝑥‖ ≥ 𝛿‖𝑥‖:

� 𝑇 is injective

� 𝑇𝑋 ⊆ 𝑋 is closed

� if 𝑇𝑋 is dense in 𝑋, then 𝑇 is invertible.

On a normed space 𝑋, for 𝑆, 𝑇 ∈ 𝐿 (𝑋) st 𝑆𝑇 = 𝑇𝑆, 𝑆𝑇 is invertible (so (𝑆𝑇)−1 ∈ 𝐿 (𝑋), then 𝑆 and 𝑇 are each invertible.

Spectrum & resolvent set

Let (𝑋, ‖ · ‖) be a normed space over the field C.

For 𝑇 ∈ 𝐿 (𝑋):

� the resolvent set is 𝜌(𝑇) := {𝜆 ∈ C : 𝑇 − 𝜆Id is invertible}

– 𝑅𝜆 (𝑇) := (𝑇 − 𝜆Id)−1 ∈ 𝐿 (𝑋) is called the resolvent operator for 𝜆 ∈ 𝜌(𝑇)

� the spectrum of 𝑇 is 𝜎(𝑇) := C\𝜌(𝑇)

𝜆 ∈ 𝜎(𝑇) if at least one of:

1. 𝑇 − 𝜆Id is not injective

2. ¬∃𝛿 > 0 st ∀𝑥 ∈ 𝑋 ‖𝑇𝑥 − 𝜆𝑥‖ ≥ 𝛿‖𝑥‖

3. 𝑇 − 𝜆Id is not surjective

𝜆 ∈ C is an eigenvalue of 𝑇 if ∃𝑥 ∈ 𝑋, 𝑥 ≠ 0 st 𝑇𝑥 = 𝜆𝑥. 𝜎𝑃 (𝑇) := {𝜆 : 𝜆 is an eigenvalue of 𝑇} is the point spectrum

𝜆 ∈ C is an approximate eigenvalue of 𝑇 if there exists a sequence 𝑥𝑛 ∈ 𝑋 with ‖𝑥𝑛‖ = 1 and ‖𝑇𝑥 − 𝜆𝑥‖ → 0. This is identical
to condition 2 above. 𝜎𝐴𝑃 (𝑇) := {𝜆 : 𝜆 is an approximate eigenvalue of 𝑇} is the approximate point spectrum

𝜎𝑃 (𝑇) ⊆ 𝜎𝐴𝑃 (𝑇) ⊆ 𝜎(𝑇).
Quick examples:

� any linear map 𝐿 : 𝑋 → 𝑋 on a finite dimensional 𝑋 has 𝜎(𝑇) = 𝜎𝑃 (𝑇), BECAUSE!!!!!

� 𝑇 (𝑥) = (𝑥 𝑗/𝑗) 𝑗≥1 where 𝑇 ∈ 𝐿 (ℓ∞) has 0 ∈ 𝜎𝐴𝑃 (𝑇) but not 𝜎𝑃 (𝑇).

� 𝑇 (𝑥) = 𝑡 ↦→
´ 𝑡
0 𝑥(𝑠) d𝑠 in 𝐿 (𝐶 [0, 1]) has no eigenvalues, but 𝜎(𝑇) = {0}

For any 𝑇 ∈ 𝐿 (𝑋), 𝑋 a complex Banach space:

� 𝜌(𝑇) is open, and the map 𝜌(𝑇) 3 𝜆 ↦→ 𝑅𝜆 (𝑇) is analytic - ∀𝜆0 ∈ 𝜌(𝑇) there is a neighbourhood 𝑈 of 𝜆0 in 𝜌(𝑇) and
coefficients 𝐴 𝑗 (𝜆0, 𝑇) ∈ 𝐿 (𝑋) st ∀𝜆 ∈ 𝑈

𝑅𝜆 (𝑇) =
∞∑︁
𝑗=0

(𝜆 − 𝜆0) 𝑗𝐴 𝑗 (𝜆0, 𝑇)

� 𝜎(𝑇) is non-empty, compact, closed and ∀𝜆 ∈ 𝜎(𝑇) |𝜆 | ≤ ‖𝑇 ‖𝐿 (𝑋 )

� for any 𝜆 ∈ 𝜎(𝑇), 𝑗 ∈ N, 𝜆 𝑗 ∈ 𝜎(𝑇 𝑗 ), so |𝜆 | 𝑗 ≤ ‖𝑇 𝑗 ‖

� 𝑟 (𝑇) := sup{|𝜆 | : 𝜆 ∈ 𝜎(𝑇)} is the spectral radius

� 𝑟 (𝑇) = lim 𝑗→∞ ‖𝑇 𝑗 ‖1/ 𝑗 = inf 𝑗∈N ‖𝑇 𝑗 ‖1/ 𝑗

� for any complex poly 𝑝, 𝜎(𝑝(𝑇)) = 𝑝(𝜎(𝑇)) := {𝑝(𝜆) : 𝜆 ∈ 𝜎(𝑇)}

� 𝜎(𝑇) = 𝜎𝐴𝑃 (𝑇) ∪ 𝜎𝑃 (𝑇 ′) - note dual here.
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