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1 Banach spaces

Let X be a vector space over the field F =R or C.

[l -]l : X = R is a function if:
e Vxe X ||x|| 20, and ||x]| =0 & x=0
o |lax]l = |alllxll

o [+ yll < llxll+ Iyl

a pair (X, |- ||) is a normed space.

every norm || - || induces a metric d(x,y) = ||x — y||, so everything from Part A Metric spaces also applies.
Notes on Part A content:
e just translate d to || - ||, but ensure that you don't confuse norms.
e Cauchy sequence: Ve > 03N st Vn,m > N ||x, — x|l < &
e equivalent norms...
— so equiv => equal banach, but two equiv norms are not necessarily both hilbert spaces

e subspace is a normed space by restricting the norm

A Banach space is a complete normed vector space - i.e. every Cauchy sequence in X converges.
Given (X, || - |lx) is a Banach space, and Y c X is a subspace, (Y,]| - ||x) is a Banach space & Y is closed in X

An inner product space (X, < -,- >) is called a Hilbert space if it is complete wrt to the norm ||x|| = /< x,x > (more detail in
FA2)

Thus, Hilbert space = Banach space = complete metric space.

1.1 Examples of metric spaces

Given p € [1,00]:
R% - 1lp) or (C 11+ lp), where

1/p
x|l = (Z |xl~|”) for 1< p < oo

el == sup x|
1

sequence spaces: ({p, || - |l ,), where
lp = {(xj)jgN : Z [x;1? < oo} forl<p <o

J=1

lo = {(xj)jeN : (x;) is a bounded sequence}



0 1/p
llxlle, = (ZIXJ'IP) forl<p <o
=1

el = sup x|
J

function spaces: (LP(Q), ] - |lLr)

given Q C R is an interval/a measurable subset of R", consider first:

Lr ::{f:Q—HRmeasurablest/lflpdx<oo} forl1<p<oo
Q

L7 :={f:Q — R measurable st M |f| < M a.e.}

(note that we only consider measurable functions and the Lebesgue integral/measure so no need to worry about integrability)

Their norms are:

1/p
lfllLr = (/ |f|'"dx) forl<p<o
Q

[ fllze :=esssup|f|:={inf M : |f]| < M a.e}

These two functions are only actually norms on LP(Q) := £LP /~ equipped with || - ||Lr, where f ~g & f =g a.e.
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2 Bounded linear operators

Given (X, |- llx), Y, - lly), T : X = Y; T is a bounded linear operator if T is linear and 3M € R st Vx € X ||[Tx|ly < M||x||x.

L(X,Y):={T:X > Y | T is a bounded linear operator}, with the operator norm ||T||1(x y) := inf{M : Vx € X ||[Tx|ly < M]||x|Ix}
is a normed space.

17|l
ITlx,y)y= sup ——= = ITx|l=sup |[|Tx]|
xex,xz0 |Ix]l xeX,|lx|=1 xeX,|x||<1

and ||Tx|| < ||IT|||lx]l. Note T is not actually a bounded function.
Given T is a linear function between normed spaces, TFAE: T is Lipschitz cont, T is cont, T iscont at 0 and T € L(X,Y)
L(X,Y) is a Banach space

composition of blos is a BLO



3 Finite dimensiona normed spaces

all norms on R™ are equivalent, and all norms on finite dimenionsal spaces are equivalent
if T:X — Y is a linear map between normed spaces, and X is fin-dim, then T is a BLO.
An m-dimensional normed space (X, || - ||) is homeomorphic to F™".

every finite dimensional normed space is complete, because the F are Vm, and so are finite dimensional subspaces of normed
spaces.

TFAE:

1. dim(X) <
2. Y c X bounded and closed = Y compact

3. S:={xe X :|x|]| =1} is compact

4 Density & Stone-Weierstrass

D c X is dense if

D=X & VxeX3(y,) e D sty, »xasn— co
— VxeXVe>03dyeDl|x-y|ll<e

If Y is a dense subspace of (X, |- |lx) and (Z, || - ||z) is a Banach space, then T € L(Y, Z) has a unique extension T € L(X,Z).

We now consider a compact subset K € R”", and C(K) = C(K,R), the space of continuous real-valued functions, with the sup
norm.

D C C(K) separates points if Vp,qe K,p #q: 3g € D st g(p) # g(q) or dge D st g(p) =0 and g(g) =1
D C C(K) is a linear sublattice if f,g € D = max(f, g), min(f,g) € D or equivalently if f € D = |f| € D

Stone-Weierstrass w/ lattices: if L is a linear sublattice, contains the constant functions, and separates points in K, then L is
dense in C(K)

Lemma for proof: for any f € C(K), L € C(K) containing the constant functions, separates points, Vp,q € K 3f, , € L st
Ip.a(p) = f(p) and fp 4(q) = f(q), and Ve > 0 Jan open neighbourhood U} , of {p,q} in K st |f - fj 4| <eon Uj,

Polynomial approximation theorem: the space of polynomials is dense (i.e. under uniform convergence) in C(K).
A C C(K) is a subalgebra if A contains the constant functions and f,g € A = f-g€ A

A closed subalgebra of C(K) is a linear sublattice [4.7]

Stone-Weierstrass for subalgebras: If A is a sublagebra which separates points, A is dense in C(K)

Generalisatation of Dini’s theorem: Given K C M is a compact subset of a metric space (M,d) and g, : K — R is a decreasing
sequence of continuous functions, converging pointwise to 0. Then g, — 0 uniformly. [4.8]

for any 1 < p < o0, and any compact K € R", the space C®(K) of smooth functions is dense in LP(K) [4.9, no proof]

5 Separability

A normed space (X, || - ||) is separable if 3D C X which is countable and dense in X.

Separability is closed under equivalence of norms and isometric isomorphism.
Every finite dimensional normed space is separable.
E.g.:(€°, || - llo) and L=(Q) for any non-empty Q C R" are inseparable.

Given: (X,||-|lx) is a normed space, Y C X a subspace (with norm || - ||x), if D is dense in (Y, || -||x) and Y is dense in (X, || - ||Ix),
then D is dense in X.

IF there is a countable set S st span(S) is dense in a normed space X, then X is separable.
C(K) and LP(K) are separable for any compact set K C R", {7 (F) is separable, all for 1 < p < o0
If (X,]|-]|lx) is separable and Y is a subspace of X, then (Y, || - ||x) is separable



6 Hahn-Banach

The dual space of a normed space (X, | - ||) is X* := L(X,F) with the operator norm || f]lx* := sup,ex Ifl“ylcl)\. Note that it is
always complete, and Vf € X*,x € X |f(x)]| < || £llIx]l

Theorem 1. Hahn-Banach for bounded extension

Given a real/complex normed space X, a subspaceY C X, f € Y*, there is an extension F € X* of f -i.e. Fly = f,||[Fllx- = |lflly+-

Note that we already have ||[F||x+ = || flly+, as Y C X, so all we need to prove is F(x) < p(x) := || fllllx]l.
We generalise this by considering all p that are sublinear - i.e. p(x+y) < p(x) + p(y) and p(Ax) = Ap(x) for A > 0. Thus:

Theorem 2. real Hahn-Banach for sublinear functions

Given a normed space X, a subspace Y ¢ X and p : X — R sublinear, with f € Y* st f(y) < p(y) Vy € Y, then there is an
extension F € X* of f stVx € X F(x) < p(x)

Proof. if X is inseparable, not on the course. If it is, see notes, using the intermediate lemma for the case X = span(Y U {xo} O

Applications

Vx € X\{0}, where (X, || - ||) is a normed space, 3f € X*with || f|| =1, st f(x) = ||x]|.
On a normed space (X, || - ||):

o Vx €X: |lxllx =supsex, =1 1f ()]

o Ve X" |Ifllx: = subyex,xjx=1 |/ (¥)]

For any x # y in a normed space there is a linear functional f € X* that separates them, so f(x) # f(y).
If f:X —F, f+#0islinear for a normed space X, then Vxg € X with f(xg) # 0, span(ker(f) + {xo}) = X

we can separate points from closed subspaces: for a proper closed subspace Y C X a Banach space, then Vx € X\Y 3f € X* with
£l =1st fly =0 and f(x)=dist(x,Y) > 0.

the annihilator of A C X is A° :={f € X" : fla=0}, and for T C X", T, :={x € X : Vf €T, f(x) =0} = fer ker(f)

In a normed space (X, || - |]):

e for § C X, span(S) is dense < §°={0} C X*

e for T C X*, span(T) is dense in X* = T, ={0} C X.

for any A C X normed, A = (A°),

7 Dual spaces, second duals & completion

for f : X — F, linear, on a normed space X, ker(f) is closed < f € X*.
Riesz Representation theorem: for a Hilbert space X, the map ¢ : X — X* defined by ¢t(x)(y) = {x, y) is an isometric isomorphism.
[no proof]
Dual spaces of specific examples: we characterise them by isometric isomorphism to a known space.
o [P forl<p<ooletqge(l,00]stl/p+1/g=1. Then (LP(Q))* = L9(Q), and the bijective linear map is L : L9(Q) —
(LP(Q))* where L(f) =g — [o f-gdxeR.

e (P(R) for 1 < p < oco: let g € (1,00] st 1/p+1/q = 1. Then (¢P(R))* = ¢9(R), and the bijective linear map is
L:{9(R) — (¢P(R))" where L(x) =y = 3 xjy; € R.
j=1

The second dual of a normed space X is X**, which exists as the dual space is itself a normed space.
i: X — X* defined by i(x)(f) := f(x) is an isometric linear map.
X is reflexive if i(X) = X** (normally it is a proper subspace) - e.g. P, LP for 1 < p < o0

X is isometrically isomorphic to i(X), which is a dense subspace of the Banach space (i(X),|| - ||x=), so we can consider any
non-complete normed space as a dense subspace of a Banach space - this is the completion of X.



Dual operators

for any linear map T : X — Y for vector spaces X,Y over the same field, and X’ := {f : X — F linear}, then T’ : Y’ — X’ is the
dual map of T, defined by T7(f) = x — f(T(x))

Given X,Y are normed spaces, and T € L(X,Y), the dual map is well-defined and T” € L(Y*, X), and ||T"[|L(v*.x*) = IT|lL(x,v)

8 Spectral theory

T € L(X) is invertible if it is bijective (so has an algebraic inverse, which might not be continuous), and 7! € L(X)
If T is algebraically invertible, then it is invertible/7! € L(X) <= 36 > 0 st Vx € X ||Tx|| > 6||x]|.
On a Banach space X, for T € L(X) st 36 > 0 st Vx € X ||Tx|| = 6||x||:

e T is injective

e TX C X is closed

e if TX is dense in X, then T is invertible.

On a normed space X, for S,T € L(X) st ST =TS, ST is invertible (so (ST)™* € L(X), then S and T are each invertible.

Spectrum & resolvent set
Let (X, || -||) be a normed space over the field C.
For T € L(X):
e the resolvent set is p(T) := {1 € C: T — Ald is invertible}
— Ry(T) := (T - A1d)~! € L(X) is called the resolvent operator for 1 € p(T)
e the spectrum of T is o (T) := C\p(T)
A€ o(T) if at least one of:
1. T — Ald is not injective
2. =36 > 0stVx e X ||Tx — Ax]|| = §||x||

3. T — Ald is not surjective

A€ Cis an eigenvalue of T if 3x € X,x #0 st Tx = Ax. op(T) := {1 : A is an eigenvalue of T} is the point spectrum

A € C is an approximate eigenvalue of T if there exists a sequence x,, € X with ||x,|| =1 and ||Tx — Ax|| — 0. This is identical
to condition 2 above. gap(T) := {1 : A is an approximate eigenvalue of T} is the approximate point spectrum

op(T) C oap(T) € o(T).

Quick examples:

o T(x) = (%i/j)j»1 where T € L({*) has 0 € cap(T) but not op(T).
e T(x)=tr féx(s) ds in L(C[0,1]) has no eigenvalues, but o(T) = {0}
For any T € L(X), X a complex Banach space:

e o(T) is open, and the map p(T) 3 A +— R (T) is analytic - VAo € p(T) there is a neighbourhood U of Ay in p(T) and
coefficients A;(1p,T) € L(X) st VA e U

Ro(T) = Y (A= 0)"A; (A0, T)
j=0

e o(T) is non-empty, compact, closed and VA € o (T) || < ||IT|lLx)
o forany 1€ o(T),j €N, AV € o(T7), so |4/ < ||IT||

o r(T) :=sup{|| : 1 € o(T)} is the spectral radius

o r(T) =limj e [IT7 "V = inf e IT7]|M

e for any complex poly p, o (p(T)) = p(c(T)) :={p(A) : 1€ o(T)}
o 0(T)=0ap(T)Uop(T’) - note dual here.



