
Differentiation
Continuity

at a point iff limh→0 f(x+ h) = f(x)

Given f, g, cont. functions, the following functions are cont

f + g |f |
cf for c ∈ R exp(f)
fn for n ∈ N fα for α ∈ N, f strictly positive
fg f/g, g ̸= 0
f ◦ g log f, f strictly positive
max(f, g)

Differentiation in 1D

at a point x ⇐⇒ limh→0
f(x+h)−f(x)

h .uses the same rules as in table above, but not max or |f |
Rules for derivative combinations are kinda obv. Extension of quotient rule:

d

dx

(
f

gk

)
=

g df
dx − kf dg

dx

gk+1

Taylor’s Theorem

For k >= 0, and f : D → R is ’smooth’

f(x) = f(x0) + (x− x0)
df

dx
(x0) + · · ·

+
(x− x0)

k

k!

dkf

dxk
(x0)

+
(x− x0)

k+1

k + 1!

dk+1f

dxk+1
(ξ)⇐ Lagrange remainder

for some ξ ∈ (x0, x)

Partial differentiation

Consider f : D → R, for D ⊆ Rn a partial derivative is, e.g. ∂f
∂x or ∂2f

∂x∂y (Clairaut’s theorem

gives us that ∂2f
∂x∂y = ∂2f

∂y∂x if both are cont). Define the Hessian of f as:

H =



∂2f

∂x2
1

∂2f

∂x1 ∂x2
· · · ∂2f

∂x1 ∂xn

∂2f

∂x2 ∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f

∂xn ∂x1

∂2f

∂xn ∂x2
· · · ∂2f

∂x2
n


n-D differentiation

For a function f : D → R for D ⊆ Rn:

df

dx
=

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn

)T

← a column vector

Linearity, the product rule and the quotient rule all work as expected from the 1D case.



The chain rule does as well, at least for g : R → R with f as above. But if f : Rm → Rn and
g : Rn → R, then

d

dx
(g ◦ f) = J(f)T

(
dg

dx
◦ f

)
Useful derivatives include:

Function Derivative
aTx, xTa → a

xTx → 2x

xTAx → (A+AT )x = 2Ax (if A symmetric)

Jacobian

Given f : Rm → Rn, we can consider f as a column vector of scalar-valued functions. Then the
Jacobian is its ’derivative’

J(f) =

[
∂f

∂x1
· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


So Ji,j =

∂fi
∂xj

Note, obviously, that H(f) = J( dfdx )
T . Combinations of Jacobian matrices:

J(f + g) = J(f) + J(g)
J(cf) = cJ(f) (for const c)
J(Af) = AJ(f) (for const matrix A)

J(fTg) = gTJ(f) + fTJ(g) (dot product rule)

J(fg) = g df
dx

T
+ fJ(g) (prod. of scalar, vector)

J(g ◦ f) = (J(g) ◦ f)J(f) (partial chain rule)

J(x) = I
J(Ax) = A

Taylor’s Theorem in nD

Given f : D → R for D ⊆ Rn:

f(x) = f(x0) + (x− x0)
T df

dx
(x∗) (0th order)

f(x) = f(x0) + (x− x0)
T df

dx
(x0) (1st order)

+
1

2
(x− x0)

TH(f)(x∗)(x− x0)

f(x) = f(x0) + (x− x0)
T df

dx
(x0) (2nd order)

+
1

2
(x− x0)

TH(f)(x∗)(x− x0) + e3



Optimisation
To find: argminx∈F f(x) for an objective function f , on a feasible set F .
If F = Rn then optimisation is unconstrained. Otherwise, it is constrained, and F is normally
defined as

F = {x ∈ Rn|gi(x) = 0, ..., hi(x) ≥ 0, ...}

If F = ∅ then the problem is infeasible/inconsistent, and if there is no minimum then it is
unbounded.

1D

i.e. for f : R→ R. First we need df
dx = 0. We then need to find global minima:

global minima ⊆ local minima ⊆ stationary points

For constrained optimisation you also need to check endpoint values.
If k is the index of the first non-zero derivative, then

x0 is local


{
minimum if dkf

dxk > 0

maximum if dkf
dxk < 0

if k is even

stationary point if k is odd

Of course, if d2f
dx2 (x0) > 0 then x0 is immediately a local min.

nD, unconstrained

i.e. for f : Rn → R. First we need df
dx = 0.

H(f)((x0) is positive definite⇒ x0 is a minimum

For a symmetric matrix A

A is


positive definite

positive semi-definite
negative definite

negative semi-definite

 if xTAx


>
≥
<
≤

 0

If A is 2-by-2 then you can replace xTAx by eigenvalues or pivots above.
Also: A is positive (semi-)definite ⇔ −A is negative (semi-)definite.

For a positive (semi-)definite matrixA, so is :

A+B for B positive semi-definite
cA for c ∈ R
A−1 which exists if A is pos def

CTAC for full rank C for pos def, otherwise any C

Convexity

A set D ⊆ Rn is convex ⇐⇒ ∀x1,x2 ∈ D,∀α ∈ (0, 1) (1− α)x1 + αx2 ∈ D.
A function f : D → Rn on convex D ⊆ Rn is convex ⇐⇒ ∀x1,x2 ∈ D,α ∈ (0, 1)

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)

(strict convexity defs have strict inequalities)
If we have a convex f , then

global minima = local minima = stationary points



But of course in constrained optimisation we still need to check the boundary:
for a function f : D → Rn on convex D ⊆ Rn with cont. second-order derivatives

f (-/strictly) convex ⇔H(f) positive (semi/-)definite

Convex Concave (strict is *)
y = ax+ b y = ax+ b
* exp(x) * logx

|x|p for * p > 1 (if p = 1 only concave)
For f, g (strictly) convex functions on convex D ⊆ Rn, so are

f + g
cf ∀c ∈ R

x 7→ f(Ax+ b) (for strict convexity A full rank)
max(f, g)

expf

Tricks

If g is a strictly increasing function,

argmin
x∈F

f(x) = argmin
x∈F

g(f(x))

e.g. if f is a product (and a positive function) then log f is a sum, and sometimes easier to diff.
If g is a 1-1 function,

argmin
x∈F

f(x) = g

(
argmin

x∈F
f(g(x))

)
e.g. to minimise cos(exp(x)) we need points where exp(x) = nπ.

Equality constraints

Use the Lagrangian, as it has the same stationary points on the constraint as f :

Λ(x, λ1, λ2...) = f(x)− λ1g1(x)− λ2g2(x)...

Then differentiate and eliminate λ to get solutions, then classify them as follows.

� Check if f is unbounded (i.e. if there is even a global min)

� evaluate the stationary points to find the min.

Inequality constraints

The question is if each constraint hi(x) is slack (> 0) or tight (= 0) Guess (with reasoning)
which are so, and solve all options for remaining tight/slack constraints, and check that the ones
assumed to be slack are actually slack.

Numerical integration
in 1D

Note m = a+b
2 ,

Dk = minx∈(a,b)
dkf
dxk

DK = maxx∈(a,b)
dkf
dxk



Midpoint Rule:

M1[f, a, b] = (b− a)f(m)

err(M1)[f, a, b] ≤ − 1

24
(b − a)3D2

Mn[f, a, b] =

i=1∑
n

M1[f, xi−1, xi]

=
b− a

n

i=1∑
n

f
(xi−1 + xi

2

)
err(Mn)[f, a, b] =

i=1∑
n

err(M1)[f, xi−1, xi] ≤ − (b− a)3

24n2
D2

Trapezium Rule:

T1[f, a, b] =
b− a

2
(f(a) + f(b))

err(T1)[f, a, b] ≤
(b − a)3

12
D2

Tn[f, a, b] =

i=1∑
n

T1[f, xi−1, xi]

=
b− a

2n
(f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)))

err(Tn)[f, a, b] ≤ − (b− a)3

12n2
D2

Simpson’s Rule:

Note n must be even.

S2[f, a, b] =
b− a

6
(f(a) + 4f(m) + f(b))

err(S2)[f, a, b] ≤
(b − a)5

2880
D4

Sn[f, a, b] =

i=1∑
n/2

S2[f, x2i−2, x2i]

=
b− a

3n
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xn−1) + f(xn)))

err(Sn)[f, a, b] ≤ −
(b− a)5

180n4
D4

Note all these composite methods do about the same amount of work (all eval. f roughly n
times)

in nD
The 1D methods above can be extended (i.e. evaluating f on grids in n dimensions) but that
means their error converges only at O(n−2/d) and O(n−4/d), which is very slow. So we use
Monte Carlo Integration:
Given N random vectors X1, ...XN

MCN [f,R] = Area(R)
1

N

∑
i

f(Xi)



Useful properties include:

� E[MCN [f,R]] =
∫
R
f(x)dx (i.e. unbiased)

� Var[MCN [f,R]] = V/N for a constant

� P[|err(MCN )[f,R]| ≥ ϵ]→ 0 as N →∞, for any ϵ > 0 (i.e. consistent

� err(MCN )[f,R] approaches the Normal distribution N(0, V
N ) for large N.

So the error (the standard error
√

V
N ) decreases as O(N−1/2) regardless of dimension, which is

slower than, e.g. Simpson’s but much better if d is large.
To use this, we need to generate random vectors in R, so the simplest way to do that is choose
an S such that R ⊆ S and random vectors in S can be easily generated, and then discard vectors
in S\R. If necessary, we can calculate Area(R) as Area(S) × the proportion of accepted samples
from S.
Techniques to improve this: importance sampling, control variates (

∫
R
f(x)dx =

∫
R
(f(x−

f̂(x))dx+
∫
R
f̂(x)dx) , stratified sampling

Accuracy

For u ∈ R:
ũ− u is the error
|ũ− u| is the absolute error
|ũ− u|/|u| is the relative error

If u ∈ Rn replace |x| with the Euclidean norm ∥x∥.
Error

Rounding error only roughly 15 sig digits can be stored

Machine epsilon, ϵ the smallest quantity st. every x ∈ R can be stored as x̃, a floating point
with relative error ≤ ϵ

For double precision ϵ ≈ 2−53 ≈ 1.1× 10−16

Most methods run with accuracy to within a few multiples of ϵ. Others will run to
√
ϵ

which is bigger than ϵ.

Catastrophic cancellation occurs if a ≈ b, then small relative errors in a or b can cause large
relative errors in a− b. Avoid this by rewriting formulae to avoid subtraction of this kind

Truncation error error when approximating an infinite procedure with a finite one (e.g. a
Taylor poly vs the orig. function)

Roundoff error is introduced by approximating a real number with a stored (floating point)
number

Propagation is when a small error is magnified by the following procedures (often called in-
stability), e.g. solving Ax = b

Rates of convergence

Given a algorithm that seeks x∗ with iterative guesses x1,x2, ..., the absolute error at the n-th
step is ϵn = xn − x∗.



If |ϵn| → 0, convergence is

linear |ϵn+1|
|ϵn| → α ∈ (0, 1) cn for c < 1

sublinear |ϵn+1|
|ϵn| → 1 (throughout)

logarithmic (is

sublinear)

|ϵn+2−ϵn+1|
|ϵn+1−ϵn| → 1 1/n

superlinear |ϵn+1|
|ϵn| → 0 cn

2

order-q (q > 1) |ϵn+1|
|ϵqn| → α > 0 c2

n

is order-2

Order-2 convergence is often called quadratic. It is very useful when comparing algorithms to
know that:

If An converges with order q, then A2n converges with order q2.

Rootfinding
Termination

Forward error bounds:
|xn − xn−1| < tol a small change in abs. error
|xn − xn−1| < tol|xn| a small change in relative error
|xn − xn−1| < tol(1 + |xn|) measures both abs. and rel

OR Backward error bound: |f(xn)| < tol function close to zero (backward error bound)

Practical bounds: (must include)
n = N iteration ran out of time
a step was ill-defined so an error must be raised

Interval bisection

Given mn = an+bn
2 ,

If f(an)f(mn) < 0 set (an+1, bn+1) to be (an,mn), otherwise (mn, bn).
It is slow, but guarantees convergence given a bracket (use either maths or test increasing brackets
of the form (−2k, 2k)), but this method does not generalise to higher dimensions.
Convergence is linear, as ϵn+1 = 1

2ϵn, and we need n =
⌈
log b0−a0

2tol

⌉
Newton’s method in 1D

Uses 1st-order Taylor poly as an approximation, and finds the root of that.

xn+1 = xn −
f(xn)
df
dx (xn)

Problems

�
df
dx (xn) = 0 means the iteration is undefined

� it can diverge (if df
dx is close/eq. to 0)

� it can converge to a different root

� it can also get stuck in a loop

Error

By the same Taylor expansion,

x∗ − xn ≈
f(xn)
df
dx (xn)

= xn+1 − xn

So we can make one more iteration to get an a posteriori error estimate.



Given

AI(c) =
maxβ∈I

∣∣∣ d2f
dx2 (β)

∣∣∣
minα∈I

∣∣∣ d2f
dx2 (α)

∣∣∣
� For an interval I = (x∗ − c, x∗), if x0 ∈ I and cAI(c)

2 < 1, Newton’s method converges at
least quadratically to x∗.

� Given a bracket for x∗ of the form (m − c,m + c), Newton’s method converges at least

quadratically starting at m, if cAJ (c)
2 < 1 for the interval J = (m− 2c,m+ 2c).

� Such an interval J exists if df
dx (x

∗) ̸= 0.

If f has a very small derivative at the root (so f is ill-conditioned) then there is possibility for
significant roundoff error.

Secant method, 1D

Uses linear interpolation and solves that approximation.

xn+1 = xn −
f(xn)(xn − xn−1)

f(xn)− f(xn−1)

Only needs 1 eval. of f per step, as we can remember f(xn−1).
Can fail if f(xn) ≈ f(xn−1), and a useful termination condition is |f(xn)−f(xn−1)| < tol|f(xn)|
to avoid this.

Error

Same conditions as Newton’s Method, to get order-ϕ convergence, for ϕ between 1.5 and 1.7.
Remember that two steps of the secant method have order ϕ2 > 2 convergence, which is faster
than Newton’s method (so if Newton is slower than two secant steps, use this instead).

Newton’s method in dD

We are solving f(x) = 0 for f : Rd → Rd . To get this method split f into d functions Rd → R
and apply the 1st order Taylor poly, to get:

xn+1 = xn − (J(f)(xn))
−1f(xn)

or, which is about 3 times faster, solve for ∆x in (J(f)(xn))∆x = −f(xn) and set xn+1 =
xn +∆x
If J(f)(xn) is singular, there may not be a solution, so we must stop. The cost per iteration is
O(d3) to solve for ∆x and O(d2) to evaluate the Jacobian.
We can make this less fragile if we insist that ∥f(xn+1)∥ < ∥f(xn)∥ (†), and if it is not true,
set xn+1 = xn + λ∆x for λ ∈ (0, 1). Damping with small λ will always satisfy (†), but may
only be linear convergence.

Quasi-Newton methods

Essentially we want to approximate Jn, with Ĵn. This must satisfy the secant equation: (yr =
f(xr))

yn = yn−1 + Ĵn(xn − xn−1)

And also must not change for vectors orthogonal to xn − xn−1 (Trid).
A starting approximate Jacobian is needed (either −I or J(f)(x0)), and we can optimise further
by tracking the inverse of the approximation and only updating that.
Termination is similar to Newton’s, and it may need more steps, but they will likely be faster.



Numerical optimisation
Similar termination conditions to rootfinding:

� |xn − xn−1| < tol(1 + |xn|) - loc. of approx min didn’t change much (might signify step
length too short, but good for Newton-like methods)

� |f(xn)− f(xn−1)| < tol(1 + |f(xn)| - val. of approx min didn’t change much (dangerous if
fun. flat far from min)

� |dfdx (xn)| < tol - when gradient close to zero (only applicable if methods computes gradient)

� n = N or ill-defined steps.

Warning: The relative error in loc. of min is O(
√
ϵ) > O(ϵ) (from Taylor’s rule if relative

error in value is less than ϵ).

Golden section search, 1D:

A bracket is a triple (a, b, c) with a < b < c,and f(a) > f(b) < f(c), which must contain at
least 1 local minimum.
Refinement process:

� choose z ∈ (a, c) and find the appropriate triple out of a, b, c, z that is a bracket.

� Choose z using the golden ratio: if (a, b) is the larger of (a, b) and (b, c), b− z = ϕ(b− a).
Also z − a = c− b.

� If the previous bracket followed the same ratio, then we have ϕ as the golden ratio.

This is linear convergence, with one eval. of f per iteration - the bracket shrinks by ≈ 0.618 per
iter. A starting bracket is required - e.g using (0, (ϕ+ 1)n, (ϕ+ 1)n+1)

Gradient descent in d dimensions

xn+1 = xn + αndn

Criteria for dn and αn: (Note gn = df
dx (xn))

1. dn is a descent direction, so gn
Tdn < 0

2. dn,dn−1, ... do not veer wildly

3. αn seeks to roughly minimise f(xn + αndn)

4. the method does not stop - i.e.
∑∞

1 αn =∞

Options for dn:

� coordinate gradient descent: cycle through unit vectors ±ei. Fast, needs no derivatives,
but naive

� gradient descent: dn = −gn. Satisfies conditions (indeed best sol.)

� conjugate grad descent: directions that satisfy dn
TH(f)(xn)dm = 0 for m < n

� in machine learning when obj. fun is an average loss, use only part of the data to find dn
(deterministic/random).

Options for αn:



� Constant: simple, but often slow progress or not actually descent

� backtracking: choose an initial step length a′n and multiply by 0 < ρ < 1 until it is
suitable.

� Good starting step length: α′
n = αn−1

gn−1
Tdn−1

gn
Tdn

� Armijo rule for suitable αn: f(xn + αndn) < f(xn) + σαngn
Tdn for (roughly) σ ∈

(10−4, 10−1).

Since we have the gradient gn it is sensible to use it in the termination conditions (e.g. as
∥gn∥ < tol(1 + ∥g0∥))
Newton methods in d dimensions

Use a 2nd order Taylor expansion and minimise that:

xn+1 = xn − (H(f)(xn))
−1gn

Much more work, as Hessian calculation is O(d2) and O(d3) to solve for ∆x for the inverse, which
is undefined if H(f)(xn) is singular.
Also the Newton direction isn’t necessarily a descent direction. (it might find a maximum).
If f has a well-behaved local minimum x∗ H(f)(xn) should be pos def near x∗ so Newton will
be quadratic conv. (not always true, e.g. if Hess only semi-def).
Can try to fix the Hessian by adding λI for some λ.

Quasi-Newton methods

Approximate the the Hessian somehow.


