
Computational Learning Theory

June 15, 2025

Maths

Hoeffding’s inequality:

X1,, Xm m indep RVs in [0, 1], X := 1
m

∑m
i=1 Xi, µ := E[X]. ∀t ≥ 0:

P
[∣∣X − µ

∣∣ ≥ t
]
≤ 2 exp(−2mt2)

Chernoff-Hoeffding bound (from S1):

X1,, Xm m indep RVs in [0, 1], X :=
∑m

i=1 Xi, µ := E[X] =
∑

i E[Xi]. ∀α ≥ 0:

P [|X − µ| ≥ α] ≤ 2 exp(−2t2/m)

[proof by Hoeffding bound with t := α/m.

Chernoff bound

X1,, Xm m indep RVs in {0, 1}, X :=
∑m

i=1 Xi, µ := E[X] =
∑

i E[Xi].
∀δ ∈ [0, 1]:

P [X ≤ (1− δ)µ] ≤ exp(−δ2µ/2)

P [X ≤ (1 + δ)µ] ≤ exp(−δ2µ/3)

1− x ≤ e−x

symmetrization argument

Classes

Conjunctions

k-CNF: clasuses of length exactly k

3-term DNF: formulae with exactly three 3 terms (which are conjunctions in them-
selves)

1

1 PAC Learning

err(h; c,D) := Px∼D[h(x) ̸= c(x)]

instance space X :=
⋃

≥1 Xn, where Xn = {0, 1}n or Rn (essentially spaces of
dimension n)

concept class C := {c : X → {0, 1}}, which we may split as Cn := {c : Xn →
{0, 1}}

distribution D over X, we have an oracle EX(c,D) that returns pairs (x, c(x)) where
x ∼ D

representation scheme for C is an onto function R : Σ∗ → C, from the set of strings
on some “finite” alphabet (which may include R if necessary, treating 1 number as
a unit character)

size(c) := minσ:R(σ)=c{size(c)}

polynomially evaluatable Hypothesis class: H :=
⋃

n≥1 Hn, where Hn is the
set of hypotheses over Xn, where there exists an algorithm that outputs h(x) on
input x ∈ Xn, h ∈ Hn in time poly in n, size(h)

PAC learning:

C is PAC learnable using hypothesis class H if:

� ∃an alg L st ∀n ∈ N ∀c ∈ Cn, ∀dist D over Xn, ∀ε ∈ (0, 1/2), ∀δ ∈ (0, 1/2)

� given inputs n, size(c), ε, δ, access to EX(c,D)

� L outputs a hypothesis h ∈ Hn that satisfies err(h) ≤ ε with probability
≥ 1− δ (prob over samples from the oracle and internal randomness)

� where the number of calls to EX(c,D) is bounded by a poly in 1/ε,1/δ, n and
size(c)

� andH is polynomially evaluatable

� it is efficiently PAC learnable (using H) if the running time of L is bounded
by a poly in 1/ε,1/δ, n and size(c)

In practise, size(c) is generally ignored, as most concept classes have a bounded
representation/ the algorithm does not depend on it.

2 Consistent learning

an algorithm L is a consistent learner for a concept class C w/ hypothesis class
H st:

� ∀n ≥ 1,∀c ∈ Cn, ∀m ≥ 1,

� given as input m examples (xi, c(xi)),

2

� L outputs h ∈ Hn st ∀i h(xi) = c(xi).

L is an efficient consistent learner if the running time of L is polynomial in
n, size(c),m

Theorem. Occam’s razor:

Given C,H,L a consistent learner of C using H:

∀n ≥ 1, ∀c ∈ Cn, ∀D over Xn, ∀ε ∈ (0, 1/2),∀δ ∈ (0, 1/2), if L is given a sample
of size m from EX(c,D) st

m ≥ 1

ε

(
log |Hn|+ log

1

δ

)
then L is guaranteed to output a hypothesis h ∈ Hn with prob ≥ 1−δ st err(h) ≤ ε.

C is then efficently PAC learnable if L is an efficient consistent learner, log |Hn| is
poly in n, size(c), and H is polynomially evaluatable.

Proof. fix n, c,D. Let h ∈ Hn be “bad” if err(h) ≥ ε.

Draw m independent samples from D, call this S. Let Ah be the event that
hypothesis h is consistent on S.

Thus, if h is bad, then P[Ah] ≤ (1− ε)m ≤ exp(−εm)

Let E =
⋃

h∈Hn:h bad Ah, so P[E] ≤
∑

h bad P(Ah) ≤ |Hn| · exp(−εm) ≤ δ by
choice of m

And the failure of L is a subset of E .

Variation forHn,m: replaceHn byHn,m, so the hypothesis also depends on the data
size. The bound for PAC learning is now: log |Hn,m| bounded by poly(n, size(c), 1/ε, 1/δ)·
mβ for β < 1 [proof v. similar, uses fact that m can just be divided out of the
bound, but now we have m ≥ (2/ε · poly(n, size(c), 1/ε, 1/δ))1/1−β , so depends on
β too.]

Hypothesis class sizes for common classes:

Conjunctions: size 3n: each variable can be pos, neg or not appear (if we have both
pos+neg, then this is the false conjunction - so need +1)

3-term DNF: ≤ 26n: each conjunction can be represented by length 2n bitstring,
need 3 of these, then there are 26n possible bit strings to represent (some of which
are the same)

3-CNF: 2c·n
3

: each cnf formula can be represented by a length (2n)3 (no. of possible

clauses, 1/0 for whether in formula), also can show there are ≥ 2Cn3

clauses, so
bound is tight enough.

3

3 VC dimension

intuiton: largest set where any pattern can be represented by C (e.g. below
this size, any noise could be matched by a different concept)

proving VCD: need 1 set of size d that you can demonstrate all dichotomies
on, and for all sets of size > d, need to show 1dichotomy fails.

Given instance space X, concept class C = {c : X → {0, 1}}

for a finite subset S ⊆ X, ΠC(S) := {c|S : c ∈ C} is the set of concepts, restricted
to just S.

ΠC(S) = {(c(x1), ..., c(xn) : c ∈ C}, as S = {x1, ..., xn}(as finite)

so |ΠC(S)| ≤ 2m as c boolean.

S ⊆ X is shattered by C if |ΠC(S)| = 2|S|, so all poss. dichotomies over S can be
realised by C - equiv, for any subset of S, there is a c ∈ C st {x : c(x) = 1} = S

Vapnik Chervonenkis dimension: VCD(C) := the cardinality d of the largest
finite set S shattered by C. If C shatters arbitrarily large finite sets, then VCD(C) =
∞

Growth function: for C over X, ∀m ∈ N,

ΠC(m) := max {|ΠC | : S ⊆ X, |S| = m}

for m ≤ VCD(C),ΠC(m) = 2m - how does it behave above the VC dimension?

Sauer’s lemma: Given d := VCD(C), for m ≥ d, ΠC(m) ≤
(me

d

)d

(i.e. O(md))

Examples:

� intervals in R: 2

� hyper-rectangles: 2n

� linear halfspaces n+ 1 (see a sheet)

Sample complexity upper bound

Theorem. Given C,H ⊇ C with VCD(H) = d, L a consistent learner of C using
H:

∀n ≥ 1,∀c ∈ Cn, ∀D over Xn, ∀ε > 0, ∀δ ∈ (0, 1/2), if L is given a sample of size
m from EX(c,D) st

m ≥ κ0

(
1

ε
log

1

δ
+

VCD(H)

ε
log

1

ε

)
then L is guaranteed to output a hypothesis h ∈ Hn with prob ≥ 1−δ st err(h) ≤ ε.
(κ0 is a universal constant, irrespective of n, ε, δ, c,D)

This is efficient PAC learning if L is efficient, and VCD(H) is polynomial in n.

4

Proof. ASDF

For notation, f ⊕ g = x 7→ 1 ⇐⇒ f(x) ̸= g(x), otherwise 0.

let H ⊕ c = {h⊕ c : h ∈ H}, and note that VCD(H ⊕ c) = VCD(H): for a lower
bound, take S of size VCD(H), and for any dichotomy f , ∃h st h ⊕ c = f (by
taking c(x) when f(x) = 0, otherwise ¬c(x). for an upper bound, (H⊕ c)⊕ c = H
because of associativity/commutativity/etc.

Here, err(h; c,D) = Px∼D[(c⊕ h)(x) = 1]

S ⊆ X is an ε-net for H ′ if ∀h ∈ H ′ st P[h(x) = 1] ≥ ε ∃x ∈ S st h(x) = 1

Thus if a finite sample S is an ε-net forH⊕c, it rules out any hypotheses inconsistent
with c.

Drawing S of size 2m:

Draw a sample S1 size mfrom EX(c,D). Let A be the event that S1 is not an ε-net
for H ⊕ c. If A occurs, then ∃h̃ ∈ H st (h̃⊕ c)(S1) = 0 and P[(h̃⊕ c)(x) = 1] ≥ ε.

Fix such a h̃, and draw a sample S2 of size m. let Xi be the indicator RV for the
ith value of S2 satisfying (h̃ ⊕ c)(x) = 1. Let X =

∑
i Xi, and E[Xi] ≥ ε, so

E[X] ≥ mε

A Chernoff bound gives P[X < εm/2] ≤ exp(−εm/16) (with δ = 1/2 for the
bound) with the m we have.

Define the event B that given a sample S = S1 ∪ S2, each size m, that ∃h′ ⊕ c ∈
ΠH⊕c(S) st |{x ∈ S : (h′ ⊕ c)(x) = 1}| ≥ εm/2 and (h′ ⊕ c)(S1) = 0.

Thus, P[B] = P[B|A] · P[A] + P[B|¬A] · P[¬A] ≥ 1/2 · P[A] by above.

Bound on P[B]:

Πε
H⊕c(S) := {h⊕ c ∈ ΠH⊕c(S) : |{x ∈ S : (h⊕ c)(x) = 1}| ≥ εm/2}

We can consider S as 1 sample of size 2m drawn from D, then partitioned.

For a fixed h⊕ c ∈ Πε
H⊕c(S), let Bh⊕c|S be the event that |{x ∈ S1 : (h⊕ c)(x) =

1}| = 0, conditioned on S.

P[Bh⊕c|S] is equiv to: 2m balls, r ≥ εm/2 are red (1)- if divided into two sets size
m, P first set has no red balls. This is(

m
r

)(
2m
r

) ≤
r−1∏
i=0

m− i

2m− i
≤ 1

2r
≤ 2−εm/2

NB. bound is still valid if r > m, as then P[Bh⊕c|S] = 0.

PS [B] = PS

PS1,S2 partition S

 ⋃
h⊕c∈Πε

H⊕c

Bh⊕c|S

 by cond prob (like cond exp)

≤ PS

 ∑
h⊕c∈Πε

H⊕c

PS1,S2 partition S [Bh⊕c|S]

 by a union bound

≤
∣∣Πε

H⊕c

∣∣ · 2−εm/2 ≤
(
2εm

d

)d

2−εm/2 as Πε
H⊕c ⊆ ΠH⊕c, and prob doesn’t dep on S

5

So P[A] ≤ 2P[B] ≤ δ by above some calculus-y bounds.

Sample complexity LOWER bound

Theorem. Given C is a concept class with VCD(C) ≥ d ≥ 25, any PAC learning
algorithm for C usingH ⊇ C requires at leastM := max

{
d−1
32ε ,

1
4ε log

1
4δ

}
examples

Proof. For all L using fewer than M , there is a distribution D, c ∈ C st P[err(hL) ≥
ε] ≥ δ. Suppose such an L exists, and so we can consider D as a samples S of size
M .

1) M ≥ d−1
32ε : let T = {x1,, xd} be a set of size d shattered by C, and D be the

distribution D(x1) = 1− 8ε, D(xj) = 8ε/(d− 1) for j > 1.

We randomly choose a concept c, u.a.r over ΠC(T).

Then run L with a sample S ⊆ T of size m = d−1
32ε , labeled according to c.

We can assume that h(x1) = c(x1) if x1 ∈ S, as otherwise we could come up with
L′ that runs L and then corrects the output on x1, since we have its label.

Let Zi be the indicator for the event that the ith sample in S is from x2, ..., xd, so
P[Zi = 1] = 8ε. Let Z =

∑
i Zi, so E[Z] = 8mε = d−1

4

By a Chernoff bound, P[Z ≥ d−1
2 = 2E[Z]] ≤ exp(−d−1

12) ≤ exp(−2)

Let E be the event that Z < d−1
2 , which implies that x1 ∈ S, as this only occurs if

Z = m. So P[E] ≥ 1− exp(−2) > 1/2.

Conditioned on E , |S| = Z +1 < d+1
2 (as samples from x2, ..., xd must repeat), so

conditioned on E , the dist. of concepts is uniform over a set size 2d−|S| ≥ 2(d−1)/2

(where obviously the seen examples are fixed, but the unseen ones could vary)

Then Px∼D[h(x) ̸= c(x)|E] =
∑

c P[h(x) ̸= c(x)|E , ”C” = c] · P[”C” = c|E] =∑
c · 1

2d−|S|

Consistent learner for linear threshold functions

LTFn := {Rn ∋ x 7→ 1≥0(w·x+ w0) : w ∈ Rn, ∥w∥2 = 1, w0 ∈ R}

(or other definitions of weight bounds).

An efficient consistent learner is essentially solving the LP:

w0 + w · xi ≥ 0 for i st yi = 1

6

4 Boosting

Weak learnability:

for a function γ(·, ·), L is a γ-weak PAC learner for C usingH if ∀n ≥ 0, ∀c ∈ Cn, for
any D over Xn and δ ∈ (0, 1/2), given L has access to EX(c,D), inputs size(c),δ, γ
outputs h ∈ Hn st w.p. ≥ 1− δ , err(h; c,D) ≤ 1

2 − γ(n, size(c)).

L is efficient if H is polynomially evaluatable, 1/γ(n, size(c)) is bounded in a poly
in n, size(c) and the running time of L is poly in n, 1/δ and size(c).

AdaBoost algorithm:

inputs: training sample size m ((xi, yi))
m
i=1, T= # of iterations, δ, the confidence

parameter, and a weak-learning algorithm WL.

� set D1(m) = 1/m

� for t = 1...T do:

– run WL on the sample, drawing examples according to Dt, with confi-
dence parameter δ/T

– recieve a hypothesis ht.

– εt := P(x,y)∼Dt
[ht(x) ̸= y] =

∑m
i=1 1(ht(x) ̸= y)Dt(i). note this is

≤ 1/2− γ with probability ≥ 1− δ/T

– αt :=
1
2 log

(
1−εt
εt

)
– Dt+1(i) := Dt(i)·exp(−αtyiht(xi))/Zt+1 = Dt(i)/Zt+1·

{
expαt ht(xi) ̸= yi

exp(−αt) ht(xi) = yi

* where the normalising constant Zt+1 :=
∑m

i=1 (Dt(i) · exp(−αtyiht(xi)))

AdaBoost analysis:

After T ≥ log 2m

2γ2
iterations, the training error of AdaBoost is 0 with probability

≥ 1− δ.

For proof of said analysis, see notes/problem sheet

Usage: then use a ERM thing, like S1.

Lemma 4.3: VCD of THRESHOLDSk(H): (from Alex’s class)

Given VCD(H) = d, we prove that VCD(THRESHOLDSk(H)) = O(kd log kd)

where THRESHOLDSk(H) :=
{
x 7→ sign

(∑k
i=1 αkhk(x)

)
: hi ∈ H,αi ∈ R, i ∈ [k]

}
Difficult to prove by shattering sets

Consider the Growth function, and try estimating it: let S = {x1,, xm}

2 steps of prediction - to compute h̃(x), first hi(x) for each i, and then apply the
αi’s

so can separate S by separating points in R. By applying all possible h’s to S, we
get at most ΠH(m) ≤ (me

d)d dichotomies.

7

let S′ =


h1(x1) · · · hk(x1)

...
. . .

...
hk(xm) · · · hk(xm)

 is the set of points (=rows) in Rm we have

when we fix a particular set of k hi ∈ H.

Each column can be chosen up to A = (me
d)d ways, so there are k times that

possible “versions” of S′ (on some fixed data set)

So then we pass this through a threshold function, which has VCD k (not +1 as
no coefficient), so we apply Sauer’s lemma again, so there are at most B = (me

k)k

So there are total A×B dichotomies, so

ΠTHRESHOLDSk(H)(m) ≤ (me
d)d(me

k)k (where some of these dichotomies will defi-

nitely be overcounted) ≤ mk(d+1) for some bad bounding

So want to know when m is such that 2m ≤ ΠTHRESHOLDSk(H)(m), which gives us
m = O(kd log(kd)) - m log 2 ≤ k(d+ 1) logm

5 Cryptographic hardness of learning

DCR problem

p, q two large primes, of the form 3k + 2

N := pq

ϕ(n) := |{k ∈ [n] : gcd(k, n) = 1}|

here, ϕ(N) = (p− 1)(q − 1)

note that 3 does not divide ϕ(N), as p, q are of the form 3k + 2 (if so, then p or q
is of the form 1 + 3k)

Z∗
N := {i : 0 < i < N, gcd(i,N) = 1}, which is group under multiplication mod.

N

fN : Z∗
N → Z∗

N is defined by fN (y) ≡ y3 mod N .

fN is a bijection, as:

� gcd(3, ϕ(N)) = 1

� =⇒ ∃d, d′ ≥ 1 st 3d = ϕ(N)d′ + 1 (Euclid’s algorithm)

� =⇒ (fN (y))
d ≡ y3d ≡ yϕ(N)d′+1 ≡ y mod N , as yϕ(N) ≡ 1 mod N for

all y

Statement of the problem:

Given N derived from p, q as above, input x ∈ Z∗
N , output y ∈ Z∗

N st y3 ≡ x
mod N

Statement of the assumption:

For any poly P (·), there does not exist an algorithm A st:

8

� given p, q are two n-bit random primes of the form 3k + 2, N := pq,

� x is drawn randomly from Z∗
N

� A runs in time P (n) on inputs N,x and outputs y ∈ Z∗
N st y3 ≡ x

mod Nwith probability ≥ 1/P (n).

The probability is over the draws of p, q, x and randomness in A.

DCRA in learning

suppose we were given a training sample S = {(xi, yi)}mi=1, where y
3
i ≡ xi mod N ,

and the xi are drawn randomly from Z∗
N .

This sample is useless for learning, as we can generate arbitrary samples by picking
y and cubing it, as fN is a bijection so the distribution is the same.

Further, although f−1
N (x) ∈ Z∗

N , and thus isn’t a boolean function, we can represent
it as a bit string of length 2n, so we have 2n boolean function, each returning a
bit.

We can turn DCRA into a PAC problem as follows:

Initial problem:

input: training sample S

output: hypothesis h : Z∗
N → Z∗

N st Px∼:Z∗
N
[h(x) ̸= f−1

n (x)] ≤ ε.

DCRA says this problem has no efficient algorithm (by flipping from P to 1/P for
ε in PAC definition)

We can further say that there is a PAC learning problem w/o an efficient algorithm
by considering bit functions, as above - if all were PAC learnable then f−1

N would
be too.

Identifying a concept class

We now have a function that is hard to learn (as can demonstrate a specific distri-
bution, minimum δ (given ε)), but want a class containing this function.

Result 1: ∃a poly P (·) st the class of concepts Cn := circuits of size ≤ P (n),
C =

⋃
Cn, C is not PAC-learnable under DCRA.

Result 2: can reduce this to Cn :=circuits with depth bounded by K logn for a
constant K, by cleverly computing powers, and giving some more inputs - see notes
for details.

6 Exact Learning

Membership query oracle, MQ(c): input x ∈ X, returns c(x)

9

Equivalence oracle, EQ(c): input h ∈ H, returns equivalent if h(x) = c(x) for all
x ∈ X, otherwise returns a counterexample x ∈ X st h(x) ̸= c(x)

Exact Learning with MQ+EQ:

C is efficiently exactly learnable if ∃a polynomially-evaluatable hypothesis class H,
a poly p(·, ·) and an algorithm L st:

� ∀n ≥ 1,∀c ∈ Cn, L, when given acces to MQ(c), EQ(c) and size(c) halts in
time p(n, size(c)) and outputs a hypothesis h ∈ Hn that is equivalent to c.
All queries L makes to EQ(c) must be of h ∈ Hn

Reducibility between learning problems, under PAC
learning:

PAC learning C polynomially reduces to PAC learning C′ if:

� ∃p poly and poly time computable func F st ∀nF : Xn → X ′
p(n)

� ∃ a map G st ∀n : G(Cn) ⊆ C ′
p(n) and ∀x ∈ Xn, c ∈ Cn, c(x) = G(c)(F (x))

(G doesn’t have to be polynomially evaluatable - won’t be computing G, just
want to know it exists)

Theorem. If C ′ is efficiently PAC learnable, and C reduces to C ′, then so is C

Proof. let c ∈ C be the target.

Generate EX(c′, D′) by drawing (x, y) ∼ EX(c,D), and output (F (x), y).

Run the alg for C ′ with this oracle to get h′ : X ′
n → {0, 1}, and output a hypothesis

for C, h : Xn → {0, 1} by h(x) = h′(F (x))

Px∼D[c(x) ̸= h(x)] = Px′∼D′ [G(c)(F (x)) ̸= h′(F (x))]

Can’t PAC learn acyclic DFAs:

C1: class of circuits of depth O(log n)- each node in the circuit can have multiple
children - so a DAG, not a tree

C2: formulae of size ≤ poly(n)

C3: any function that can be represented by a log-space Turing machine (space on
tape is O(log input size)

C4: ADFA

We have C1 ≤PAC C2 ≤PAC C3 ≤PAC C4

CONJ 3-T-DNF Monotone DNF DNF ADFA n log-depth circuits

Proper PAC Y N N N N N
PAC Y Y (via reductions to CONJ from 3-T-CNF) ? <-=? (equally hard, see s4) N under DCRA N under DCRA

PAC+MQ Y Y Y lecs = to above under crypto Y ?

10

Noisy models

Learning with random classification noise:

� only the label y is flipped, and all are flipped with equal probability η ∈ (0, 1/2)

� new oracle EXη(c,D) : draws x ∼ D,returns (x, c(x)) with prob 1 − η and
(x, 1− c(x)) with prob η

� as η → 1/2, learning is obviously harder, and we will find factors of 1
1−2η in

all complexity bounds

PAC with RCN:

Let C be a concept class and H a polynomially-evaluatable hypothesis class. C is
efficiently PAC-with-RCN learnable if there is an algorithm L st:

� ∀n ≥ 1; ∀c ∈ Cn; ∀D over Xn; ∀ε ∈ (0, 1/2); ∀δ ∈ (0, 1/2);∀η ∈ (0, 1/2) if
L, given access to Eη(c,D) and inputs n, ε, δ, size(c), η0 st η ≤ η0 < 1/2,
outputs h ∈ Hn st P[err(h; c,D) ≤ ε] ≥ 1 − δ and runs in time poly in

n, size(c),
1

ε
,
1

δ
,

1

1− 2η0

PAC-with-RCN for CONJUNCTIONS

let ℓ be a literal: Px∼D[ℓ(x) = 0∧ c(x) = 1] =: pℓ This probability will be zero if ℓ
is in the target conjunction.

ℓ is significant if P[ℓ(x) = 0] ≥ ε/8n

ℓ is harmful if pℓ ≥ ε/8n (which implies significant too)

h := conjunctions of significant and not-harmful literals

P[h(x) ̸= c(x)] = P[h(x) = 1 ∧ c(x) = 0] + P[h(x) = 0 ∧ c(x) = 1]

� - first term is caused by insignificant literals, which should have been added
(so h doesn’t return 0 on those cases)

� and the second by significant & non-harmful literals (which can still be wrong
with small probability)

≤ 2× ε/8n · 2n = ε/2

Thus, by Chernoff bounds to estimate which literals are significant/harmful, we can
generate a good approximation of h.

Statistical Query Learning:

Let C be a concept class, H a hypothesis class.

C is efficently SQ-learnable using H if ∃an algorithm L, polynomials p, q, r st

∀n ≥ 1,∀C ∈ Cn, ∀D over Xn, ∀ε ∈ (0, 1/2), L with access to STAT(c,D) and
inputs ε, size(c) does the following:

11

� ∀queries χ, τ : χ can be evaluated in time q(n, size(c), 1/ε) and t is bounded
by r(n, size(c), 1/ε)

� L halts in time p(n, size(c), 1/ε) and outputs h ∈ Hn st err(h) ≤ ε

STAT(c,D) is a new type of oracle:

� taking input χ : X × {0, 1} → {0, 1} and τ ∈ (0, 1), the tolerance parameter

� returns v̂ ∈ [v − τ, v + τ], where v = Ex∼D[χ(x, c(x)] - i.e. the expected
value of the input function over the distribution

example use for conjunctions:

χ(x, y) =

{
1 ℓ(x) = 0

0 otherwise
calculates for us P[ℓ(x) = 0], which lets us decide whether

a literal is significant

Theorem. If C is efficiently SQ learnable, then C is efficiently PAC learnable

Proof.

Overall idea: want to simulate STAT oracle just with the standard PAC oracle EX,
which we do by simplifying the STAT oracle into 2 separate

Boolean trickery: use {−1, 1} instead of {0, 1} by the map 1 → −1, 0 → 1, so
c : X → {−1, 1}, χ : X × {−1, 1} → {−1, 1}

a query is:

Ec∼D[χ(x, c(x)] = E[χ(x, 1)1(c(x) = 1)] + E[χ(x,−1)1(c(x) = −1]

= E[χ(x, 1)
1 + c(x)

2
] + E[χ(x,−1)

1− c(x)

2
]

=
1

2

E[χ(x, 1)] + E[χ(x,−1)]︸ ︷︷ ︸
target-independent queries

+E[χ(x, 1) · c(x)]− E[χ(x,−1) · c(x)]︸ ︷︷ ︸
correlational queries


New query model: for input ϕ : X → {−1, 1} we can query E[ϕ(x)] or E[ϕ(x)c(x)],
again with tolerances τ ∈ (0, 1)

So an SQ-learning algorithm works prefectly well when built on top of these new
queries (with tolerances appropriately divided on each split)

With just a noisy oracle, we can simulate a target-independent query withO(1
τ2 log

Q
δ)

examples, for it to work with prob ≥ 1 − δ to tolerance τ (where Q is the total
number of queries, used for union bound)

We can also simulate a correlational query: note that the pair (x, c(x) · Z), where
P(Z = −1) = η,P(Z = 1) = 1− η is equiv to EXη(c,D)

So E(x,y)∼EXη(c,D)[ϕ(x)y] = Ex∼D,Z indep[ϕ(x)c(x)Z] = E[ϕ(x)c(x)] · (1 − 2η),
where the first term is the expectation of what we get from the noisy oracle, and
the last term is what the query should return (times a constant...., so we need the
tolerance on the estimate of the first term to be τ ′ := τ(1− 2η). Note the noise is
independent, so this works.

12

If we don’t know η: (n.b. we don’t even need to know η0, as ≤ 1/2): let ηi = i∆
for i = 1, 2,, ⌈η0/∆⌉

run the algorithm with each ηi, to get hypotheses hi. One of them is st ∃i st
|η − ηi| ≤ ∆, and so is “good”

So if we look at E(x,y)∼EXη(c,D)[hi(x, y)] = E(x,y)∼EX(c,D)[hi(x, y)(1 − 2η)], and
choose the hi with this expectation largest (so another Chernoff bound)

Aside on inclusions (specific to general)

1. SQ

2. PAC+RCN - R-PARITIES, by using alg below on silly class

3. PAC - PARITIES (def not in SQ, probably isn’t in PAC+RCN)

4. PAC+MQ - DFA (not in PAC by DCRA)

Best known alg for parities with random classification noise is 2n/ logn

R-PARITY = {fS : S ⊆ {1... log log n log n}, |S| ≤ log n} on Xn = {−1, 1}n

so |R-PARITY|= super poly(n) (as has logs)

But R− PARITY isn’t in SQ because the same proof we wrote for PARITIES is

this essentially makes the input larger without making the concepts larger

Non-SQ learnable problem:

Theorem. PARITIES is not efficiently SQ-learnable: Precisely,

if an algorithm L makes q queries with tolerance ≥ τ0 st
q

τ0
< 2n − 2 then the

algorithm cannot learn PARITIES.

Proof. Again, let Xn = {−1, 1}n, so parity functions are of the form fS(x) =∏
i∈S xi for S ⊆ [n].

Let D be uniform on Xn, and fix

Note Ex∼U [fS(x)] =

{
0 S ̸= ∅
1 S = ∅

If we have fS , fT then Ex∼U [fS(x)fT (x)] = Ex∼U [fS∆T (x)] =

{
0 S ̸= T

1 S = T
, where

S∆T is the symmetric difference.

consider the 2n-dimensional vector space V = {f : Xn → R} - by above, the
parity functions form an orthonormal basis of V with the inner product ⟨g, g′⟩ :=
Ex∼U [g(x)g

′(x)].

So for g ∈ V , write g(x) =
∑

S⊆[n] g(S), fS(x), where g(S) := ⟨g(x), fS(x)⟩
(slight notational sillliness.

13

By Parseval’s identity,
∑

S g(S)2 = Ex∼U [g(x)
2]

Let us assume the algorithm is deterministic, and only makes correlational queries:

- this is justifiable, as we “allow” the algorithm to know the distribution is uniform,
so the target-independent queries are pointless.

Given the queries made are χ1, ..., χq : Xn → {−1, 1}, we decide to return 0 to all
of them.

How many S are there, st |E[χ1(x)fS(x)]| ≥ τ0?

χ1(x) =
∑

S χ1(S)fS(x), χ1(S) = E[χ1(x)fS(x)] . Since E[χ2
1(x)] = 1 =∑

χ1(S), there are at most 1/τ20 S st |χ1(S)| ≥ τ0.

After q such queries, we have ruled out
q

τ20
possible target functions, so by the limit

on q we have two possible parity functions consistent with the query answers we
have given.

So if S1, S2 are the two subsets consistent with the answers we have given, so

P[h(x) ̸= fS1(x)] + P[h(x) ̸= fS2(x)] ≥ P[fS1(x) ̸= fS2(x)] = 1/2

Thus one of these properties is ≥ 1/4, so take ε = 1/5 in the original definition.

If we have a random queries instead, there is a small factor in # of queries.

Occam’s razor for PAC+RCN: need to ignore efficiency

consistent learner is just least bad....

Learning real-valued Functions

Instance space is Xn, e.g. Rn, have a class of functions F of f : Xn → R

target function f ∈ F

Loss function is ℓ : R× R → R≥0

have some distribution D over Xn×R, let µ be the marginal distribution of D over
Xn

the risk of g : Xn → R is R(g) := E(x,y)∼D[ℓ(g(x), y)]

we can require that the distribution D perfectly matches the target - i.e. supp(D) ⊆
{(x, f(x) : x ∈ Xn} which is the analogue of PAC

or we can assume that there is some noise in D: the zero-mean noise model

E[y|X] = f(X) - so noise is centred around the target function

So it is reasonable to ask for g st Ex∼µ[(g(x)− f(x))2] ≤ ε.

A more general setting (non-realizable/agnostic) is to find g stR(g)−inff∈F R(f) ≤
ε

Given a sample S ∼ Dm, S = {(x1, y1), ..., (xm, ym)} the empirical risk is R̂S(g) =
1
m

∑m
i=1 ℓ(g(xi), yi)

14

E[(g(x)− y)2] = Ex[(g(x)− f(x))2] + Ex,y[(f(x)− y)2] + 2Ex,y[(g(x)− f(x))(f(x)− y)]

= E[(g(x)− f(x))2] + E[(f(x)− y)2]

where the last term disappears because f(x) − y involves an expectation over y,
which is 0

linear regression:

F : {x 7→ w · x : w ∈ Rn}

closed form solution to ERM is ŵ = (XTX)−1XT y

goal: find ŵ st E[(ŵ · x− w∗ · x)2] ≤ ε, where w∗ is the target weights.

we can also consider ∥ŵ−w∗∥22, but this is a different thing to minimise (estimation
error)

convex optimisation:

convex set K ⊆ Rn, convex function f

diam(K) = supw,w′∈K ∥w − w′∥K
B st diam(K) ≤ B

Lipschitz bound L

if differentiable as well, then f(x) ≥ f(x0) +∇f(x0) · (x− x0)

projected gradient descent

w0in K

for t = 0...T − 1

w′
t+1 = wt − η∇f(wt)

wt+1 = ΠK(w′
t+1) project back into K

output average 1/T
∑T

1 wt

non-expansion lemma thing

for T steps with η = β
L

√
1/T satisfies f(1

T

∑T
t=1 wt) ≤ minw∈K f(w) + BL√

T

Lecture 14/11/22

let ℓ(ŷ, y) = (ŷ − y)2, so squared error

R(g) = Ex,y∼D[ℓ(g(x), y))] is the error

also have standard empirical error

given F is a class of functions

realizable setting, so ∃f∗ ∈ F st E[y|x] = f∗(x)

15

G is a class of functions st F ⊆ G

algorithm: find g ∈ G st R̂S(g) ≤ ming∈G R̂S(g) + ε - this is solvable with
optimisation, for a fixed sample

other half of the question: w.p. ≥ 1− δ, for all g ∈ G ∥R̂S(g)−R(g)∥ ≤ ε

so together, we can find a function with suitably low actual rist

re-covering some AFoL:

in this realizable setting, E[ℓ(ĝ(x), f∗(x))] = R(ĝ)−R(f∗)

Further, this is equal to
(
R(ĝ)− R̂S(ĝ)

)
+
(
R̂S(ĝ)− R̂S(f

∗)
)
+
(
R̂S(f

∗)−R(f∗)
)
,

and with the results above we can bound this by 3ε.

in the linear setting:

w∗ defines f∗, and ∥w∗∥ ≤ W , so E[y|x] = f∗(x) = w∗ · x

Define B,M st ∀(x, y) ∈ support(D), ∥x∥ ≤ B, ∥y∥ ≤ M

Then let g(w) := R̂S(w) =
1
m

∑m
i=1(w · xi − yi)

2, and consider K = {w ∈ Rn :
∥w∥ ≤ W}.

g is a convex, differentiable function, st ∇g(w) = 2
m

∑m
i=1(w · xi − yi) · xi. so

∥∇g(w)∥ ≤ 10(BW +M)B.

Generalized linear models

g : Rn → R

g(x) = u(w ·x), where w ∈ Rn, ∥w∥ ≤ W,u : R → R is a monotonically-increasing
Lipschitz function.

We consider u fixed for a particular class, so the class Fvaries only over w.

For example, we could take the sigmoid function u(z) = 1
1+exp(−z)

The function h(w) = minw
1
m

∑m
i=1(u(w · xi)− yi)

2 is no longer convex.

To fix this, we try and come up with a convex function to relate to this.

If h′(w) = (u(w · x)− y)2, then ∆h′(w) = 2(u(w · x)− y)u′(w · x) · x

This is messy

surrogate loss:

Now consider ℓ(w) :=
´ w·x
0

u(z)− y dz , so ∇ℓ(w) = (u(w · x)− y)x

so consider Ey[ℓ(w;x, y)] = Ey[
´ w·x
0

u(z) − y dz] =
´ w·x
0

u(z) − E[y] dz =´ w·x
0

u(z)− u(w∗ · x) dz

Ey[ℓ(w;x, y)] − Ey[ℓ(w
∗;x, y)] =

´ w·x
w∗·x u(z) − u(w∗ · x) dz (if w∗ · x ≤ w · x,

otherwise the other way round)

� argument for following bound:

� function depends on z only, is 1-Lipschitz, and monotonically increasing.

� it exists in a range [0, u(w · x)− u(w∗ · x)], and must hit this final value

16

� thus, since it is 1−L it’s slope must be 1, and must stay above a right triangle
of side (u(w · x)− u(w∗ · x)) for both.

≥ 1
2 (u(w · x)− u(w∗ · x))2 by Lipschitz-ness THINK ABOUT THIS STEP!!!

so w∗ is a minimiser of Ey[ℓ(w;x, y)]

surrogate risk: Rℓ(w) := Ex,y[ℓ(w;x, y)] - w
∗ is a minimizer of this, so if we find

w st Rℓ(w) ≤ Rℓ(w∗) + ε, then we have that E[12 (u(w · x)− u(w∗ · x))2] ≤ ε , so
we actually get a bound on the (real) squared loss risk.

Note that the Hessian of ℓ is u′(w · x)(xx⊤), which is positive semi-definite, as
u′ ≥ 0 as u increasing.

Convex losses for classification:

Either linear models f(x) : w · x, using ŷ := sign(f) as our actual classifier. Note
that a u is thus completely pointless here

suaared loss: 1(ŷ ̸= y) ≤ (f(x)− y)2

logistic loss: ln(1 + exp(−y(f)): 1(ŷ ̸= y) ≤ ln(1 + exp(−y(f))/ ln(2)

absolute loss: 1(ŷ ̸= y) ≤ |f(x)− y|

exponential: 1(ŷ ̸= y) ≤ exp(−yf(x))

hinge loss: 1(ŷ ̸= y) ≤ 1
γ max{0,−yf(x) + γ}

So if we can minimize these RHSes, we know that we are doing well on classification.

(Empirical) Rademacher complexity

note lack of monotone u in prev lecture means we no longer have efficiency, as we
can learn parities with noise.

Let G be some class of functions f : X → [a, b]

D is a distribution over X

S = (z1, .., zm) ∼ Dm an iid sample

ϕ(S) = ϕ(z1, ..., zm) = supg∈G
{
Ez∼D[g(z)]− 1

m

∑m
i=1 g(zi)

}
- i.e. the difference

over all g between the true expectation and an empirical estimate

notation: let ÊS [g] =
1
m

∑m
i=1 g(zi) be the empirical expectation over the sample

S = {z1, ..., zm}

17

ESϕ(S) = ES [sup
g

{
Eg − ÊSg

}
]

= ES [sup
g
(ES′(ÊS′g − ÊSg))]

= ESES′ sup
g
(ÊS′g − ÊSg)]

= ES,S′ sup
g

1

m

m∑
i=1

g(z′i)− g(zi)

= Eσ,S,S′ sup
g

1

m

m∑
i=1

σi(g(z
′
i)− g(zi))

≤ 2Eσ,S sup
g

1

m

m∑
i=1

σig(zi) by splitting sup on 2 terms

where σ is a length m vector of iid −1, 1 Rademacher RVs σi st P[σi = 1] = P[σi =
−1] = 1/2.

We can specialise to csondiering rish

Given G be some class of functions f : X → [a, b]

S = (z1, .., zm) (a multiset) , the empirical Rademacher complexity is R̂ADS(G) :=
Eσ supg

1
m

∑m
i=1 σig(zi)

so if D is a distribution over X, the Rademacher complexity is RAD(G) :=

ES [R̂ADS(G)] = Eσ,S supg
1
m

∑m
i=1 σig(zi)

so if S is shattered by G ⊆ {g : X → {0, 1}}, then R̂ADS(G) = 1

If G contains the constant +1,−1 functions, then R̂ADS(G) ≥ Ω(1√
n
)

McDiarmid’s inequality: X is a set, f : Xm → R st ∀i ∃ci st ∀z1, ..., zm, z′i ∈ X
|f(z1,, zi,, zm)− f(z1, ..., z

′
i, ..., zm)| ≤ ci

Z1, , ..., Zm are iid RVs taking values in X

then ∀ε > 0 P[f(Z1, ..., Zm) ≥ E[f(Z1, ..., Zm) + ε] ≤ exp(−2ε2∑
i c

2
i
)

We wish to apply this to ϕ from earlier, which is true with ci ≤ 2(b−a)
m as the gi are

bounded

bounding ϕ(S) by rad +
√

l log 1/delta
2m

Compositition results:

F1 + F2 := {f1 + f2 : f1 ∈ F1, f2 ∈ F2}

RADm(F1 + F2) ≤ RADm(F1) + RADm(F2)

RADm(c · F) = |c|RADm(F)

Talagrand’s lemma:

S ⊆ X, |S| = m, F a class of functions

18

ϕ1, ..., ϕm are L−Lipschitz, then

Eσ[supf∈F
1
m

∑m
i=1 ϕi(f(zi))] ≤ L · R̂ADS(F)

Examples:

F = {x 7→ w · x : ∥w∥ ≤ W} , ∥x∥ ≤ B, ∥y∥ ≤ M for x, y ∈ supp(D)

Given S = {(x1, y1), ...,m}

R̂ADS(F) = Eσ sup
w

1

m

∑
i=1

(w · xi)σi

= Eσ sup
w

w · 1

m

∑
i=1

xiσi

≤ Eσ sup
w

W · ∥ 1

m

∑
i=1

xiσi∥

= W · Eσ∥
1

m

∑
i=1

xiσi∥

≤ W

√
1

m2

∑
i

∥xi∥2 CAUTION, HARD!!!

≤ WB/
√
m

now consider G1 = {(x, y) 7→ w · x− y : ∥w∥ ≤ W}

g ∈ G1, so g1(x, y) ∈ {−BW −M,BW +M}

G2 = {(x, y) 7→ ϕ(g(x, y) : g ∈ G1}

where ϕ(z) = z2 for squared loss, so ϕ′(z) = 2z and is 2(BW +M) on [−BW −
M,BW +M]

so R̂ADS(G2) ≤ (2BW +M)BW√
m

so for f ∈ F ,we have that |E[(f(x)− y)2]− Ê[(f(x)− y)2]| ≤ 2(BW+M)(BW)√
m

Online learning

Online learning/Mistake-bounded model

constantly get data, may not be from the same dist

instance space X

Learning algorithm

At time t, the algorithm gets data point xt ∈ X, and must predict ŷt ∈ {0, 1}, and
after that gets yt ∈ {0, 1}.

So up to time t, the mistakes of the algorithm = MISTAKES(T) =
∑t

s=1 1(ŷt ̸= yt)

have a concept class C, guarantee that ∃c ∈ C st ∀t yt = c(xt) (otherwise learning
isn’t really possible, not without some other similar (maybe weaker) guarantee)

19

we want MISTAKES to remain small and finite even as t → ∞ (note that 2n is
often trivial by memorising data, as gets it wrong on each example at most once)

for now, we allow the algorithm to remember all previous xt, yt, (ŷt)

Online learning Conjunctions

starting assumption: add everything

remove term(s) that disagree after each example - note this doesn’t require storing
any data ecept the hypothesis (and I suppose the last one)

Mistake bound: ≤ n+ 1

At the start, h1 has 2n literals. When the first mistake occurs, exactly n literals
are removed (as must remove 1 of each pair x,¬x): for each later mistake at least
one literal is dropped. Thus, the number of mistakes cannot exceed n + 1 (as that
would require dropping more than 2n literals).

Mistake-bounded learning:

a concept class C is learnable with a mistake bound M if there exists a learning
algorithm L st that ∀c on any input sequence (xt, yt)

∞
t=1 st yt = c(xt) for all t,

that ∀t MISTAKES(t) ≤ M

we can consider it as running (ŷt+1, St+1) = f(St, xt+1, yt)

and at time t we allow running time of f to be poly in n, t, size(c) (where n is the
size of the instance space)

space-based learning algorithms: at time t, it can store a “sketch” St st |St| ≤
poly(n, size(c)) [or alternatively |St| ≤ poly(n, size(c), log t) if we allow it to know
what time it is]

efficiency: we require that the function f is efficiently computable

comparison to EQ

so if C can be learnt with mistake bound M , then C can be learnt with EQ in M+1
queries: at each step, we query EQ with the current hypothesis - if equivalent, we
are done, otherwise we pass the counterexample to it (= a mistake), so must be at
most M + 1 steps, as it makes a mistake on each step.

note this does require extending EQ to any representation of the function.

if C can be learnt exactly with ≤ q EQ queries, then it can be learnt with mistake
bound q:

let A be the EQalforithm. Let hi be the ith query to EQ.

We use hi to answer online learning queries, until it makes a mistake, and pass
that back to A as a counter-example (thus when we get an hi that happens to
be consistent with c, though we will never know for certain, A is just left hanging
forever).

This must happen at most q times, as that is the bound on the # of queries.

comparison to PAC: if C is (efficiently) online learnable with MB M ≤
poly(n, size(c)) then C is (efficiently) PAC learnable

20

do this via EQ:

so if A learns C with ≤ q EQ queries:

let h1 be the first query made by A. If err(h1) ≥ ε, then in m =???? examples we
will??? find a mistake, which we pass back to A to get hi+1

P[h1 makes no mistakes after m draws] ≤ (1− ε)m ≤ exp(−εm)

if we go m steps without making a mistake, return hi, or if we end up with M h’s,
then return the last as it will be correct.

total time is ≤ m,Bm

Halving algorithm:

� let C1 = C

� for t = 1, 2.....

– given xt, compute c(xt) for all c ∈ Ct

– set ŷt to be the majority label

– observe yt, and let Ct+1 = {c ∈ Ct : c(xt) = yt}

the mistake bound of this is ≤ log |C| (alg only really makes sense in the first place
if C is finite)

relation to VC dim:

claim: VCD(C) ≤ maxt MISTAKES(t) for any mistake-bounded algorithm for C

let S be some shattered set, and then MISTAKES ≥ |S|, as keep having concepts
consistent with unseen points in S until we have seen all of S

some examples:

dictator functions: ci(x) = xi for each i ∈ [n]

algorithm for this on specific instance spaceX = set of basis vectors 1000, 0100, 0010, 0001

always output 0, mistake bound = 1, as when we get a mistake, we know exactly
which function was expected

on other instance spaces, get ∼ logn again - prove?

binary search concept idea:

X = {1, ...2n}, ci(x) := 0 if x < i, otherwise 1, C = {ci : i ∈ 1...2n}. VCD(C) =
1, but the mistake bound is n by a binary-search style argument

21

Online learning algorithms

Perceptron algorithm

f : Rn → {−1, 1}, concept class is half-spaces through the origin, so

fw(x) = 1 if w · x ≥ 0, otherwise 0

The algorithm:

� Set w0 = 0 ∈ Rn

� for t = 1, 2, ...

– recieve xt ∈ Rn

– predict ŷt := sign(wt · xt)

– recieve yt

– if ŷt ̸= yt, set wt+1 := wt + ytxt, otherwise no change.

Analysis/interpretation

let w∗ be the true weights.

For any given weights w, these predict + on points in the same half-space as them,
so the mistake between w∗ and wt,say, is the symmetric difference of the two
regions.

The update step wt+1 := wt + ytxt “rotates” towards the true weights

Theorem. suppose ∥xt∥ ≤ D for all t, let w∗be the true separator, st yt = sign(w∗ ·
xt), ∥w∗∥ = 1 and |w∗ · xt| ≥ γ for all t. Then MISTAKES of the perceptron
algorithm is O(D2/γ2)

Proof. (using lemma below)

So γmt ≤ wt · w∗ ≤ ∥wt∥∥w∗∥ ≤ √
mtDt , so mt ≤ D2/γ2 (where we use the

lemma below, and the Cauchy-Schwarz inequality.

Lemma. Let mt be the # of mistakes made up to time t. Then wt · w∗ ≥ mtγ,
and ∥wt∥2 ≤ mtD

2

Proof. So wt+1 = wt + ytxt.

wt+1 ·w∗ = wt ·w∗ + ytxt ·w∗ ≥ γmt + ytxt ·w∗ ≥ γ(mt + 1), using induction in
the first term, and for the second, the margin.

Thus we induct on the steps mistakes are made on.

Similarly,

∥wt+1∥2 = ∥wt∥2+∥ytxt∥2+2 ytwt · xt︸ ︷︷ ︸
<0

≤ ∥wt∥2+D2 ≤ mt+1D
2, where the < 0

bound is as this is a mistake, and ∥ytxt∥ ≤ D as yt ∈ {−1, 1}

Note with a fair no. of data points, we could just run the LP consistent learner for
offline learning, as VCD = n or n+ 1

22

Monotone disjunctions

concept class: fS(x) = 1 if at least one of a set S ⊆ {x1,, xn} is satisfied, where
|S| ≤ k

could write this as a linear threshold function - e.q. sign(
∑

i∈S xi−1/2) (note 1/2,
can put that into an extra dimension)

here, D =
√
n, and γ = c/

√
k for a constant c, so the mistake bound is O(nk)

the VCD ≤ O(k logn) by counting no. of subsets of size k

or a consistent learner:

� add all to S

� whenever 0, remove all vars which are 1.

Winnow algorithm for monotone disjuctions

[Littlestone ’88]

� Start with w1 = {1,, 1}, which will stay integers at all times

� for t = 1, ...

– recieve xt ∈ {0, 1}n

– ŷt = 1(wt · xt ≥ n/2)

– recieve yt, and if different:

* if ŷt = 1, yt = 0

· set wt+1
i = 0 for all i st (xt)i = 1

* if ŷt = 0, yt = 1

· set wt+1
i = 2wt

i for all i st (xt)i = 1

Explanation:

� first mistake type: elimination steps (E) - these terms are definitely not in
the target S

� second type: promotion steps (P) we had the correct terms already, but
didn’t prioritise them.

Winnow algorithm analysis

� claim 1: ∀t,∀i wt
i ≤ n:

– any weight that may increase in a P step must be < n/2, otherwise it
would have successfully predicted ŷt

� claim 2: ∀t, #P ≤ k logn

23

– in every promotion step, at least one “relevant” variable has its weight
doubled

– there are ≤ k relevant variables - the ones in the taget

– each variable can be doubled ≤ log n times

� claim 3: #E ≤ #P + 2

– let Tt :=
∑n

i=0 w
t
i be the total weight, which must obviously be non-

negative at all t

– at an elimination step, Tt decreases by ≥ n/2

– at a promotion step, Tt increases by < n/2

– Initially, T1 = n, so 0 ≤ Tt ≤ n+ P (n/2)− E(n/2)

So the # of mistakes is bounded by 2k log n+ 2

This is in a sense equivalent to have a margin condition, because we only use integer
weights!

Online learning with Expert advice

Problem:

� multi-round game between a decision maker, and an environment (which may
be adversarial)

� we have a finite time horizon T , where the game ends - i think....

� the decision maker has n “options”/ “experts” Ai

� at each round, the decision maker must pick a distribution over these options,
i.e. xt ∈ ∆n = {x ∈ Rn :

∑
i xi = 1}

� then the environment picks a loss vector ℓt ∈ [0, 1]n

� therefore the loss at time t is ℓt · xt

� so the total loss is Loss(DM) =
∑T

t=1 xt · ℓt

adaptive adversary: the environment has access to previous choices of xt and the
current one too

oblivious adversary: the environment has no access to choices of xt (i.e might as
well choose losses at the start)

24

Best option in hindsight

Choose an option according to how it performed on previous rounds.

Loss(Ai) =
∑t

i=1 ℓt,i

Regret(DM) = Loss(DM) −minx∗∈∆n

∑T
t=1 ℓt · x∗ captures the idea of the en-

vironment being bad, in the sense that it compares the decisions made to the best
possible option given the adversarialness of the environment. Note the strategy we
are comparing to is a fixed strategy - there is no t subscript on x∗

note the regret may be negative (as we are allowed to change strategies, unlike the
comparison strategy)

hedging idea: spread prob. mass around the actions, so the (adverserial) environ-
ment can’t make the loss bad just on what we picked, so the regret doesn’t change
(as much)

Strategy 1: “follow the leader”

� pick xt to be the indicator/one-hot of the best historical action

� this doesn’t work at minimising regret:

– on just two actions, A,B, first set Loss(A) = 1/2,Loss(B) = 0, then
alternate setting them 1, 0 and 0, 1 forever

– note the 1/2 is important, to ensure the previous losses add up correctly

– so Loss(FTL) = T (−1), and Regret(FTL) = T/2, as the best action
is choosing B in all cases

Multiplicative weight update algorithm

w1 = (1, ..., 1) ∈ Rn

for t = 1, ..., T :

� let xt = wt/Zt, where Zt :=
∑

i=1 wt,i

� observe the loss vector ℓt (and suffer loss xt · ℓt)

� wt+1,i := wt,i · exp(−ηℓt,i)

This is rather like a softmin

we (might) prove that Regret(MWUA) ≤ 2
√
T logn, given η =

√
logn
T

this is tight: for example, on 2 actions the same alternating thing (randomly assign-
ing 1,0 loss o actions), the expected loss of some??? DM is T/2, and the expected
loss of the best constant strategy is T/2− c

√
T

25

Boosting

(x1, y1), ..., (xm, ym), hypothesis class H (for weak learning)

DM over m actions

� DM picks dt over {1, ...,m}

� the environment does weak learning by picking ht st err(ht; dt) ≤ 1/2 − γ,
and lets ℓt,i = 1(ht(xt)− yt)

By doing this, the MWUA algorithm gives us exactly the AdaBoost algorithm.

so we have that dt · ℓt ≥ 1
2 + γ

Loss(DM) ≥ T
2 + γT

Loss(i) =
∑T

i=1 1(ht(xi) = yi)

so Regret(DM) ≤ 2
√
T logn

and so Loss(i) ≥ T/2 + γT − 2
√
T logm > T/2 for T ≥ logn)/γ2

so majorities is correct on all m examples.

Zero sum games

So we have two players, A,B, where A has actions 1...n, B has 1..m. There is a
matrix Pi,j for i ∈ [n], j ∈ [m] which is the payoff to player A if A chooses action
i and B chooses j, and Pi,j ∈ [0, 1]

Von Neumann’s Min-Max theorem

if B can see A’s action, then A’s optimal strategy is to choose maxi minj Pi,j , and
if B goes first, then A will pick minj maxi Pi,j

we have that maxi minj Pi,j ≤ minj maxi Pi,j not convinced I have setup cor-
rect!!!!!!!!!!!!!!!

Distributions over actions

So A,B each choose distributions over the actions σA, σB ∈ ∆n,∆m respectively

aagain

maxσA
minσB

PσA,σB
≤ minσA

maxσB
PσA,σB

where PσA,σB
= Ei∼σA,j∼σB

[Pi,j],
but these are actually equial.

Player 1 uses MWUA over its n actions

Player A uses best response, which is to pick σt
B that minimses Pσt

Aσt
B
= (σt

A)
⊤rt,

where r

fill in, if necessary, from online notes

26

except major corrections in eq above eq. 4 - has x,y wrong way round

this is actually an algorithm for approximating LPs with error poly in 1/ε (though
not log thereof)

in proof of MWUA, note that lt is not a vector of ones, but the loss vector

27

	PAC Learning
	Consistent learning
	VC dimension
	Boosting
	Cryptographic hardness of learning
	Exact Learning

