Advanced Topics in Statistical Machine Learning

Contents

Notation 0.1. $\lambda \succeq 0$ implies that $\forall i \ \lambda_i \ge 0$

Convexity - can also do via Hessian being positive semi-definite.

can do pos (semi) def by considering $z^{\top}Az$ for arbitrary z, seeing if everything turns out to be a square....

trick for computing distributions, e.g. posteriors - p(w|D) must be a distribution, so we can lose all the scaling terms and just compare shape in w

trick: for a scalar λ , $\lambda = Trace(\lambda)$, and then if $\lambda = x^{\top}z$, say, $\lambda = Tr(x^{\top}z) = Tr(z^{\top}x)$

1 Basics/background

supervised learning, e.g. classification or regression unsupervised learning discriminative v. generative

1.1 ERM

[on discriminative supervised learning]

assume there is a joint distribution $\mathbb{P}[X,Y]$, have an iid sample from it, \mathcal{D} learning a function $f: \mathcal{X} \to \mathcal{Y}$ that will approximate Y|X = x loss function general form

 $L: \mathcal{Y} \times \mathcal{Y} \times \mathcal{X} \to \mathbb{R}_+$

almost always doesn't depend on x, so generally L(y,f(x)) risk

$$R(f) := \mathbb{E}_{X,Y}[L(Y, f(X))]$$

hypothesis space \mathcal{H} , optimal f (in \mathcal{H}) is

$$f^* = \arg\min_{f \in \mathcal{H}} R(f)$$

(or optimising over parameters $heta \in \mathcal{H}$ empirical risk

$$\hat{R}(f) := \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))$$

if f is chosen independently of the data used in the empirical risk, this is an unbiased estimate of the risk. . . . but if f is trained using this data it becomes a negatively biased because we have actively chosen f for which it will be smaller

loss functions

lots available

softmax/ mappings with sign/sigmoid to turn real line to probs

0/1 loss - Bayes classifer is optimal

hinge loss - in SVMs,

expo

1.2 Constrained optimisation

Primal problem:

minimise:
$$f(\boldsymbol{x})$$
 $i \leq m$ st $f_i(\boldsymbol{x}) \leq 0$ $i \leq m$ $h_j(\boldsymbol{x}) = 0$ $j \leq n$

the (primal) optimum value is $p^* = f_0(x^*)$. any x st $f_i(x) \le 0$, $h_j(x) = 0$ for all i, j is a primal feasible point Lagrangian:

$$L(x; \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x)$$

the dual variables are $\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^r$. dual problem:

$$\begin{array}{ll} \text{maximise:} & \inf_{x\in\mathcal{D}}L(x,\boldsymbol{\lambda},\boldsymbol{\nu})\\ & \text{st }\lambda_i\geq 0 & i\leq m \end{array}$$

to actually write this down: use differentiation/etc. to find the $\inf_{x \in D}$

 $d^* := \sup_{\lambda \succeq 0, \nu} \inf_{x \in D} L(x, \lambda, \nu)$ weak duality: $d^* \le p^*$

1.3 Lagrangian explanation

Given the primal problem f, we can consider

$$\tilde{f}(x) := f_0 \sum_{i=1}^m \infty_{f_i(x)>0} + \sum_{j=1}^r \infty_{h_j(x)\neq 0},$$

and minimising \tilde{f} is equivalent to minimising f under the constraints. Then

$$\sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) = f(x)$$

If we have no inequality constraints, considering the Lagrangian $L(x,\nu) := f(x) + \nu h(x)$ and differentiating, then $\nabla_{x,\nu}L(x,\nu) = 0 \iff h(x) = 0$ and $\nabla_x f(x) = -\nu \nabla_x h(x)$, which implies that we have the optimum value within the constraints, as the gradients of the objective and the constraints are opposite.

2 SVMs

two varieties: separable and inseparable data

margin for given weights w:

$$M(w): +2\min_{i} \frac{1}{\|w\|} \|w^{\top} x_{i} + b\|$$

so the aim is to solve

maximise: M(w)over $w \in \mathbb{R}^d$

derivation:

- · can rescale the weights however we like
- for any two points x_+, x_i st $w^{\top}x_+ + b = 1, w^{\top}x_- + b = -1$, so $||w|| ||x_+ x_i|| = 2$, so the margin is 2/||w||
- when all the points are classified correctly i.e. $\min_i y_i(w^{\top}x_i + b) = 1$, relaxed to ≥ 1
- check start of proof, wasn't paying attention

2.0.1 Inseparable data

add hinge loss

which rescales to regularised ERM

add new variables ξ_i , which are constrained to $\xi_i \ge h(y_i(w^{\top}x_i + b))$ by $\xi_i \ge 0$, $\xi_i \ge 1 - y_i(w^{\top}x_i + b)$

note we need to prove that it equals it at the optimum: simple logic based on the constraints used, fact we can decrease ξ_i if > 0 and not equal to $1 - y_i(w^T x_i + b)$

standard form:

$$\begin{array}{ll} \text{minimise:} \ f_0(w,b,\xi) := \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \\ \\ \text{st} \ f_i(w,b,\xi) := 1 - \xi_i - y_i (w^\top x_i + b) \leq 0 & i \leq m \\ \\ f_{n+i}(w,b,\xi) := -\xi_i \leq 0 & j \leq n \end{array}$$

Strong duality will hold, as the problem is convex with afffine constraints and a feasible solution will exist So the Lagrangian is

$$L(w, b, \xi; \alpha, \lambda) := \frac{\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i}{+ \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i (w^\top x_i + b)) + \sum_{i=1}^n \lambda_i (-\xi_i)}$$

which we differentiate wrt the primal variables to get the dual $g(\alpha, \lambda) := \inf_{w,b,\xi} L(w,b,\xi;\alpha,\lambda)$

- to get $w = \sum_{i=1}^{n} \alpha_i y_i x_i$, $\sum_{i=1}^{n} y_i \alpha_i = 0$ and $\alpha_i = C \lambda_i$,
- so we get rid of λ and have $\alpha_i \in [0, C]$ by the constraint on λ .

why we have equality constraints on the dual:

The result of the derivatives gives us $\sum_{i=1}^{n} y_i \alpha_i = 0$ and $\alpha_i = C - \lambda_i$, which do not include the primal variables, so they must hold, or the dual function $g = -\infty$, as we can always change b/ξ_i

dual program:

$$\begin{split} \max_{\alpha} \sum_{i=1}^{n} \alpha_{i} &- \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j} \\ \text{st} \sum_{i=1}^{n} \alpha_{i} y_{i} &= 0 \\ \& 0 \prec \alpha \prec C \end{split}$$

calculating vars

w is obvious, b is $y_{i_{margin}} - w^\top x_{i_{\text{margin}}}$ for any i st $0 < \alpha_i < C$

types of datapoint:

• non support vectors, if $\alpha_i = 0$

- so $\lambda_i = C \alpha_i > 0$, so $\xi_i = 0$ - and so $y_i(w^{\top}x_i + b) \ge 1$ (almost always > 1)
- margin support vectors, if $\alpha_i \in (0, C)$:
 - so must have that $y_i(w^{\top}x_i+b) = 1 \xi_i$, and since $\lambda_i > 0, \xi_i = 0$, so $y_i(w^{\top}x_i+b) = 1 = 0$ the boundary
- margin errors/ non-margin Support Vectors: $\alpha_i = C > 0$
 - so $y_i(w^{\top}x_i + b) = 1 \xi_i$, and since $\lambda_i = 0, \xi_i \ge 0$, which means $y_i(w^{\top}x_i + b) \le 1$, which is a margin error (as within the margin (even if classified correctly

Insights in the solution:

what a support vector is

bounded influence

weights are in the span of the datapoints

multi-class

1-vs-all

1-v-1, pick class that wins the most

3 Kernel methods

feature map $x \mapsto \varphi(x)$, where $\varphi : \mathcal{X} \to \mathcal{H}$, where \mathcal{H} is often infinite dimensional

in SVMs, data only appears in an inner product, so we just replace $x_i^{\top} x_j$ with $k(x_i, x_j)$, where k is the inner product in the space \mathcal{H} .

Note the weights can't be expressed with just k, as $w = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)$, though the intercept b can:

$$b = y_{\text{margin}} - \sum_{i=1}^{n} \alpha_i y_i \underbrace{\phi(x_i)^{\top} \phi(x_{\text{margin}})}_{k(x_i, x_{\text{margin}})}$$

however the decision function is still good:

$$\hat{y}(x) = \operatorname{sign}(w^{\top}\phi(x) + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + b\right)$$

Standard kernels:

- polynomial kernel $k(x_i, x_j) = (1 + x_i^{\top} x_j)^d$ introduces d-order polynomial interactions, φ is a horrible map
- exponential/RBF kernel:

$$k(x_i, x_j) = \exp\left(-\frac{1}{2\gamma^2} ||x_i - x_j||_2^2\right)$$

where the feature mapping is

$$\varphi(x) = \exp\left(-\frac{1}{2}x^2\right) \left[1, x, \frac{x^2}{\sqrt{2!}}, \frac{x^3}{\sqrt{3!}}, ..., \frac{x^r}{\sqrt{r!}}, ...\right]^\top$$

3.1 RKHS

standard inner products (on spaces over \mathbb{R}), standard Hilbert space

Definition 3.1 (Kernel). $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if $\exists a$ Hilbert space \mathcal{H} and a map $\varphi : \mathcal{X} \to \mathcal{H}$ st $\forall x, x' \in \mathcal{X}$

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

Definition 3.2 (Positive definite function). $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is postive definite if

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \ge 0 \quad \forall n \ge 1, \forall a_i \in \mathbb{R}, \forall x_i \in \mathcal{X}$$

which is equivalent to saying the matrix $(K_{i,j})_{i,j}$ defined by $K_{i,j} = k(x_i, x_j)$ is positive semi-definite

Notation 3.3. For kernels, we have strictly pos-def /pos def, for matrices pos-def / pos-semi-def.

Lemma 3.4. All kernels are positive definite (proof by rearranging sums

3.2 RKHSs

Definition 3.5 (RKHS, reproducing kernel). Given \mathcal{H} is a Hilbert space $\subseteq \{f : X \to \mathbb{R}\}, k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a reproducing kernel of \mathcal{H} if:

- $\forall x \in \mathcal{X} : k_x = y \mapsto k(y, x)$ is in \mathcal{H}
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H} \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property)

If \mathcal{H} has such a k, then it is a RKHS.

Lemma 3.6 (Reproducing kernels are kernels). A reproducing kernel k is a normal kernel with the feature map $\varphi : x \mapsto k(\cdot, x)$, which is the canonical feature map

Proof. Given
$$f = k(\cdot, x')$$
, we have [using defs of k, φ , fact $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is symmetric]
 $k(x, x') = f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = \langle k(\cdot, x'), k(\cdot, x) \rangle_{\mathcal{H}} = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$

Theorem 3.7 (Moore-Aronszajn). every pos def function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is also a reproducing kernel with a unique corresponding *RKHS*.

Proof. assume k is symmetric, as well as pos def [**prove this!**]

So we want to specify a RKHS associated with k.

Consider functions of the form $f = \sum_{i=1}^{r} \alpha_i k(\cdot, x_i)$ for $r \ge 1, \alpha_i \in \mathbb{R}, x_i \in \mathcal{X}$.

Let $\mathcal{H}_0 = \text{span} \{k(\cdot, x) : x \in \mathcal{X}\}$, so \mathcal{H}_0 is the set of these f.

if $\mathcal{H} \supset \mathcal{H}_0$, then $k(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{X}$

Define a function h st $h(k(\cdot, x), k(\cdot, x')) = k(x, x')$ of the form $h : (\mathcal{X} \to \mathbb{R}) \times (\mathcal{X} \to \mathbb{R}) \to \mathbb{R}$

define an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ by $\left\langle \sum_{i=1}^{r} \alpha_i k(\cdot, x_i), \sum_{j=1}^{s} \beta_j k(\cdot, x'_j) \right\rangle_{\mathcal{H}} := \sum_{i=1}^{r} \sum_{j=1}^{s} \alpha_i \beta_j h(k(\cdot, x_i), k(\cdot, x'_j)) = \sum_{i=1}^{r} \sum_{j=1}^{s} \alpha_i \beta_j k(x_i, x'_j)$

This is an inner product [linear, symmetric, non-neg norm, 0 iff f=0]

finally, take ${\cal H}$ to be the completion of ${\cal H}_0,$ and extend $\left<\right>_{{\cal H}}$ by completion.

And finally,
$$\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = \langle \sum_{i=1}^{r} \alpha_i k(\cdot, x_i), k(\cdot, x) \rangle = \sum_{i=1}^{r} \alpha_i k_i(x_i, x) = f(x)$$
 [by symmetry of k]

3.2.1 More on RKHSs

Definition 3.8 (Alt def of RKHSs). \mathcal{H} is an RKHS if the evaluation functionals $\delta_x : \mathcal{H} \to \mathbb{R}$, defined by $\delta_x f = f(x)$ are continuous for all $x \in \mathcal{X}$, or equivalently if δ_x is a bounded operator - i.e. $\|\delta_x\|_{\mathcal{H}^*} < \infty$.

Note this implies $||f - g||_{\mathcal{H}} = 0 \implies f(x) = g(x)$ for all $x \in \mathcal{X}$.

Proposition 3.9 (Equivalence of definitions).

Proof. first def \implies second: $|\delta_x f| = |f(x)| = |\langle f, k(\cdot, x) \rangle| \le ||f||_{\mathcal{H}} ||k(\cdot, x)||_{\mathcal{H}} = \sqrt{k(x, x)} \cdot ||f||_{\mathcal{H}}$ other way uses R-r theorem

Proposition 3.10 (Uniqueness of reproducing kernels). Each RKHS has a unique corresponding reproducing kernel.

Proof. assume there exists 2, $k_1 \neq k_2$. Then $\langle f, k_1(\cdot, x) - k_2(\cdot, x) \rangle_{\mathcal{H}} = \cdots = 0$, apply with $f = k_1(\cdot, x) - k_2(\cdot, x)$

Proposition 3.11 (Uniqueness of RKHS). For any given kernel/pos def func, the RKHS is unique.

Theorem 3.12 (Representer theorem). There is always a solution to

$$f^* = \underset{f \in \mathcal{H}_k}{\operatorname{arg min}} \hat{R}(f) + g(\|f\|_{\mathcal{H}_k}^2)$$

that takes the form

$$f^* = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$$

where the x_i are the datapoints. If g is a strictly increasing function, all solutions have this form.

Proof. let f_S be the projection of a function f onto span $\{k(\cdot, x_i) : i\}$, and let $f_{\perp} = f - f_S$. Obviously $f_S = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$ for some $\alpha_i \in \mathbb{R}$. Then $\|f\|_{\mathcal{H}_k}^2 = \|f_S\|_{\mathcal{H}_k}^2 + \|f_{\perp}\|_{\mathcal{H}_k}^2 \ge \|f_S\|_{\mathcal{H}_k}^2$ by Pythagoras. Thus, $g(\|f\|_{\mathcal{H}_k}^2) \ge g(\|f_{\perp}\|_{\mathcal{H}_k}^2)$.

 $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y, f(x_i)) = \frac{1}{n} \sum_{i=1}^{n} L(y, \langle f_S, k(\cdot, x_i) \rangle_{\mathcal{H}_k} = \hat{R}(f_S) \text{ using def of } f \in \mathsf{RKHS}, \text{ orthogonality} \qquad \Box$

Remark 3.13 (on the implications of the Representer theorem). • we can work with complex RKHS hypothesis classes, but solution is still fairly simple

- kernel directly affects solution
- complexity is limited to n good for large d, bad that we need to keep all data.

Remark 3.14 (on kernels/RKHSs). • RKHS are general and powerful

- can do ERM with solution in RKHS
- simple/analytic solutions to ERM as solutions end up being linear maps of kernels
- · choosing kernel is v. important some RKHSs too restrictive, others too broad
- bad scaling at least $O(n^2)$ at training, O(n) at test

3.3 Constructing kernels

3 methods we have:

- define the feature map, take the inner product
- as a positive definite function
- choosing the RKHS $\mathcal H_{\text{r}}$ and taking the unique reproducing kernel associated with it.

Lemma 3.15 (Mapping between spaces). given $A : \mathcal{X} \to \tilde{\mathcal{X}}$, and a kernel k on $\tilde{\mathcal{X}}$, k(A(x), A(x')) is a kernel on \mathcal{X} **Lemma 3.16** (sums of kernels). given k_1, k_2 on \mathcal{X} and $\alpha_1, \alpha_2 > 0$, $k = \alpha_1 k_1 + \alpha_2 k_2$ is a kernel [prove with pos def] **Lemma 3.17** (products of kernels). k_1 on \mathcal{X} , k_2 on \mathcal{Y} , then $k((x,y), (x',y)) := k_1(x,x')k_2(y,y')$ is a kernel, and if $\mathcal{Y} = \mathcal{X}$, then $k(x,x') = k_1(x,x')k_2(x,x')$ is also a kernel.

Definition 3.18 (Common kernels). • **RBF**: $k(x, x') = \exp(-\frac{1}{2\gamma^2} ||x - x'||_2^2)$. The RKHS contains functions which are infinitely differentiable

- Matérn kernels: less smooth, only s times differentiable
 - general [slightly useless] form includes the Bessel function...
 - for $\nu = s + 1/2$,
 - * $\nu = 1/2$: $k(x, x') = \exp(-\frac{1}{2}||x x'||)$
 - * $\nu = 3/2$: $k(x, x') = (1 + \frac{\sqrt{3}}{\gamma} ||x x'||) \exp(-\frac{\sqrt{3}}{\gamma} ||x x'||)$
 - as $\nu \to \infty$ this converges to the RBF kernel
 - $||f||^2_{\mathcal{H}_k} \propto \int f''(x)^2 dx + \frac{6}{\gamma^2} \int f'(x)^2 dx + \frac{9}{\gamma^4} \int f(x)^2 dx$ for $\nu = 3/2$, demonstrating that $||f||_{\mathcal{H}_k}$ directly penalises derivatives
- constant k(x, x') := c > 0 [useful for sums!]
- linear: $k(x, x') = x^{\top} x'$
- poly: $k(x, x') = (c + x^{\top} x')^m$ for $c \in \mathbb{R}, m \in \mathbb{N}$ what about m = 1, c < 0?
- periodic (1d) $k(x, x') = \exp(-\frac{2\sin^2(\pi |x-x'|/p)}{\gamma^2})$ for $\gamma \neq 0$, which has period p,
- Laplace: Matern w/ $\nu = 1/2$
- Rational quadratic $k(x, x') = (1 + ||x x'||_2^2/(2\alpha\gamma^2))^{-\alpha}$ for $\alpha, \gamma > 0$

Remark 3.19. In kernel (ridge) regression, we are doing linear regression in the hypothesis space, so we are comparing y_i to $\langle f, k(\cdot, x_i) \rangle_{\mathcal{H}}$, so the reproducing property is v. useful, as this simplifies to $f(x_i)$.

Remark 3.20. Confused about interpretation of sums of kernels etc - point about fitting linear reg, then doing stuff on residuals

- Remark 3.21 (Issues with choosing kernels). many kernels use Euclidean distances, but in high-D everything may far away from each other
 - challenge is more about deciding which points are similar/close than ensuring the predictor is powerful enough to discriminate/fit

4 Bayesian chapter?

5 Gaussian processes

parametric models collapse to the modal θ of the posterior distribution $p(\theta|\mathcal{D})$

non-parametric (in the sense that there's no w that we do $w^{\top}x$ with) don't have this problem, and if the model is set up correctly, θ may be infinite dimensional, but it marginalises out to something finite dimension.

instead of having a prior over θ and the model using some set of functions f_{θ} , we have a prior over f directly, and the posterior (assuming IID data, distributed as $y_i \sim f(x_i) + \sigma^2 \varepsilon$) becomes

$$p(f|\mathcal{D}) \propto p(f) \prod_{i=1}^{N} p(y_i|f(x_i))$$

in practise, we want to only work with the set of RVs $\{f(x_i)\}_{i\in[N]}$

Definition 5.1 (Gaussian process). f is a GP if it is a stochastic process whos evaluations are jointly Gaussian - i.e. $[f(x_1), ..., f(x_N)]^{\top}$ is multivariate Gaussian for any N, x_i . It is specified by its mean function $m : \mathcal{X} \to \mathbb{R}$, and a covariance function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, so that $m(x) = \mathbb{E}f(x)$ and $k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))]$, so that

$$\begin{bmatrix} f(x_1) \\ \vdots \\ f(x_N) \end{bmatrix} \sim \mathcal{N}\left(\underbrace{\begin{bmatrix} m(x_1) \\ \vdots \\ m(x_N) \end{bmatrix}}_{\mathbf{m}}, \underbrace{\begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_N) \\ \vdots & \ddots & \vdots \\ k(x_N, x_1) & \cdots & k(x_N, x_N) \end{bmatrix}}_{\mathbf{K}}\right)$$

Definition 5.2 (GP priors). Define a prior over m and k, though typically m = 0, as GPs are linear in their mean **Lemma 5.3** (Gaussian marginals and conditionals). Given $z \sim \mathcal{N}(\mu, \Sigma)$, we split its dimensions as

$$oldsymbol{z} = \begin{bmatrix} oldsymbol{z}_1 \\ oldsymbol{z}_2 \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

note that $\Sigma_{21} = \Sigma_{12}^{\top}$ because of symmetry - why? Then $p(z_1) = \mathcal{N}(z_1; \mu_1, \Sigma_{11})$, and

$$p(\boldsymbol{z}_2, \boldsymbol{z}_1) = \mathcal{N}(\boldsymbol{z}_2; \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (\boldsymbol{z}_1 - \mu_1), \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})$$

6 GPs

WRITE UP SLIDES 1 AND 2

6.1 Approximations

Want to reduce $O(n^3)$ cost. 2 approaches - approx K_{xx} with a rank m approximation, so inversion is only $O(m^3)$, or we summarise the dataset with m inducing datapoints, and fit the model on that dataset.

6.1.1 Low rank matrix approximations

If \tilde{K}_{xx} is a symmetric rank m approx to K_{xx} , then $\tilde{K}_{xx} = QQ^{\top}$ for a $n \times m$ matrix Q. Thus,

$$\left(\tilde{K}_{xx} + \sigma^2 I\right)^{-1} = \sigma^{-2}I - \sigma^{-2}Q\left(\sigma^2 I + Q^\top Q\right)^{-1}Q^\top$$

where $Q^{\top}Q$ is $m \times m$, and can be caluclated in $O(m^2n)$. Fully calculating the inverse still takes $O(n^2m)$, but applying it to a vector β only takes $O(m^2n)$.

Q represents a m-dimensional feature mapping of X

Theorem 6.1 (Bochner's). Given k(x, x') is a stationary kernel $k(x, x') = \kappa(x - x')$, then

$$k(x, x') = 2\kappa(0)\mathbb{E}\left[\cos(\omega^{\top}x + b)\cos(\omega^{\top}x' + b)\right],$$

where $b \sim Unif(0, 2\pi)$, and ω has density given by

$$p(\omega) \propto \int_{\delta \in \mathbb{R}^p} \kappa(\delta) \cos(\omega^{\top} \delta) \,\mathrm{d}\delta$$

Definition 6.2 (Random Fourier Features). For many common kernels, $p(\omega)$ is simple - e.g. for RBF, $p(\omega) \sim \mathcal{N}(0, \gamma^{-2}I)$

So we can actually form an unbiased Monte Carlo estimate of the kernel by sampling ω 's and b's, and writing the approximation as an inner product of feature maps

$$\varphi_m(x) = \sqrt{\frac{2\kappa(0)}{m}} \left[\cos(\omega_1^\top x + b_1), ..., \cos(\omega_1^\top x + b_m) \right]^\top$$

Remark 6.3. On RFF: it works pretty well on any finite interval, as $m \to \infty$ (e.g. m = 100 works pretty well), but it produces periodic functions, which means uncertainty estimates repeat, which is not ideal.

6.1.2 Sparse Gaussian Processes

summarise the datasat with m "pseudo" datapoints. these often overpredict uncertainty.

7 Deep Learningn