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Notation 0.1. A = 0 implies that Vi \; >0

Convexity - can also do via Hessian being positive semi-definite.

can do pos (semi) def by considering z " Az for arbitrary z, seeing if everything turns out to be a square...

trick for computing distributions, e.g. posteriors - p(w|D) must be a distribution, so we can lose all the scaling terms

and just compare shape in w
trick: for a scalar A\, A = Trace(\), and then if A\ =22, say, \ = Tr(z2) = Tr(z"z)

1 Basics/background

supervised learning, e.g. classification or regression
unsupervised learning

discriminative v. generative

1.1 ERM

[on discriminative supervised learning]
assume there is a joint distribution P[X, Y], have an iid sample from it, D
learning a function f : X — Y that will approximate Y| X =z
loss function general form

L:YxYxX =Ry
almost always doesn't depend on z, so generally L(y, f(z))
risk

R(f) :=Exy[L(Y, f(X))]

hypothesis space H, optimal f (in H) is
f* = arg min R(f)
fen

(or optimising over parameters 6 € H

empirical risk
R(f) :== %ZL(yi,f(wi))
i=1

if f is chosen independently of the data used in the empirical risk, this is an unbiased estimate of the risk

. ... but

if fis trained using this data it becomes a negatively biased because we have actively chosen f for which it will be

smaller

loss functions

lots available

softmax/ mappings with sign/sigmoid to turn real line to probs
0/1 loss - Bayes classifer is optimal

hinge loss - in SVMs,

expo



1.2 Constrained optimisation

Primal problem:

minimise: f(x)
0 i1<m

the (primal) optimum value is p* = fy(z*). any x st fi(z) <0, h;(z) =0 for all ¢,j is a primal feasible point

Lagrangian: / ‘
L(w; \,v) = fol) + Y Nifilw) + Y vih(x)
i—1 j=1

the dual variables are A € R™,v € R".

dual problem:

maximise: inf L(xz, A, v)
zeD

st \; >0 1 <m

to actually write this down: use differentiation/etc. to find the inf cp

d* :=supyy , infzep L(z,\v)

weak duality: d* < p*

1.3 Lagrangian explanation

Given the primal problem f, we can consider
fN(m) = fU Z X f;(z)>0 + Z OOh; (x)#0>
i=1 j=1

and minimising fis equivalent to minimising f under the constraints. Then

sup L(z,\,v) = f(x)
A>=0,v

If we have no inequality constraints, considering the Lagrangian L(z,v) := f(x) 4+ vh(z) and differentiating, then
VeoL(z,v) =0 <= h(z) =0 and V,f(z) = —vV h(x), which implies that we have the optimum value within
the constraints, as the gradients of the objective and the constraints are opposite.

2 SVMs

two varieties: separable and inseparable data

margin for given weights w:

1
M(w) : +2min W”?UT% + b
i Jlw

so the aim is to solve

maximise: M (w)

over w € R?

derivation:



e can rescale the weights however we like

for any two points z,,z; st w'xy +b=1,w'z_+b=—1, so |[w|||zy — z;|| = 2, so the margin is 2/||w||

when all the points are classified correctly - i.e. min; y;(w"z; +b) =1, relaxed to > 1

check start of proof, wasn’t paying attention

2.0.1 Inseparable data

add hinge loss
which rescales to regularissd ERM
add new variables &;, which are constrained to & > h(y;(w ' x; +b)) by & >0, & > 1 —yi(w'z; +b)

note we need to prove that it equals it at the optimum: simple logic based on the constraints used, fact we can
decrease &; if > 0 and not equal to 1 — y;(w " x; + b)

standard form:

minimise: fo(w, b, &) := %HwHQ - 02@
st fi(w,b,8) :=1—& —y;(w' z; +b) <0 i<m
frti(w,0,8) ==& <0 Jj<n
Strong duality will hold, as the problem is convex with afffine constraints and a feasible solution will exist

So the Lagrangian is

L(w,b,& a0, N) := slwl>+C Y0 &
+ 3 ai(l =& —yi(w o + b)) + >0 Mi(—&)

which we differentiate wrt the primal variables to get the dual g(a, A) := infy, ¢ L(w, b, & o, A)

e toget w=> " oyt > yia; =0and a; = C — N,

e so we get rid of A and have «; € [0, C] by the constraint on A.

why we have equality constraints on the dual:

The result of the derivatives gives us >, y;a; = 0 and a; = C' — \;, which do not include the primal variables, so
they must hold, or the dual function g = —o0, as we can always change b/¢;

dual program:

n 1 n o n
T
moftiX E oG — 5 E E aiajyiiji CCj
i=1

i=1 j=1
n
st Zaiyi =0
i=1
&O<a=<XC

calculating vars

T

w is obvious, b is Y, ..., — W T, foranyist 0 <a; <C

types of datapoint:

e non support vectors, if a; =0



—soN=C—q;>0,50& =0
— and so y;(w ' x; +b) > 1 (almost always > 1)
e margin support vectors, if o; € (0,C):

— so must have that y;(w'z; +b) = 1 — &, and since \; > 0,& = 0, so y;(w'x; +b) = 1 = on the
boundary

e margin errors/ non-margin Support Vectors: a; = C >0
—so yi(w'x; +b) =1—¢&, and since \; = 0,& > 0, which means y;(w ' z; +b) < 1, which is a margin
error (as within the margin (even if classified correctly
Insights in the solution:
what a support vector is
bounded influence
weights are in the span of the datapoints
multi-class
1-vs-all

1-v-1, pick class that wins the most

3 Kernel methods

feature map = — ¢(x), where ¢ : X — H, where H is often infinite dimensional
T

%

in SVMs, data only appears in an inner product, so we just replace
in the space H.

xj with k(x;, z;), where k is the inner product

Note the weights can't be expressed with just k, as w = > | a;y;¢(x;), though the intercept b can:

b= Ymargin — Z QY ¢($i>—r¢(xmargin)
—_—

=1
k(lz 7$margin)

however the decision function is still good:
() = sign(w 6(x) + b) = sign (Z auyik(r, ;) + b)
i=1
Standard kernels:

¢ polynomial kernel k(z;,2;) = (1 +xiij)d introduces d-order polynomial interactions, ¢ is a horrible map

¢ exponential/RBF kernel:
1
k(xi, x;) = exp (—272|33i - m%)

where the feature mapping is




3.1 RKHS

standard inner products (on spaces over R), standard Hilbert space

Definition 3.1 (Kernel). k: X x X — R is a kernel if Ja Hilbert space H and a map ¢ : X — H st Vo, 2’ € X
k((E7:17/) = <<P($)a80($/)>y

Definition 3.2 (Positive definite function). k: X x X — R is postive definite if

ZZaiajk:(azi,xj) >0 VYn>1,Va; e R,Vx; € X
i=1 j=1

which is equivalent to saying the matrix (Ki»j)ij defined by K; ; = k(z;, x;) is positive semi-definite
Notation 3.3. For kernels, we have strictly pos-def /pos def, for matrices pos-def/ pos-semi-def.

Lemma 3.4. All kernels are positive definite (proof by rearranging sums

3.2 RKHSs

Definition 3.5 (RKHS, reproducing kernel). Given H is a Hilbert space C {f : X - R}, k: X x X - Ris a
reproducing kernel of H if:

e VxeX:ky,=y— k(y,z)isinH
o Vo e X, VfcH (f k(,x)), = f(x) (the reproducing property)

If H has such a k, then it is a RKHS.

Lemma 3.6 (Reproducing kernels are kernels). A reproducing kernel k is a normal kernel with the feature map
@ : x> k(-,z), which is the canonical feature map

Proof. Given f = k(-,2"), we have [using defs of k, ¢, fact (-,-),, is symmetric]
k(m,:v’) = f(.%’) = <f,k(,$)>7_[ = <k('>xl)7k('>x)>7-[ = <90(x)ﬂ90($/)>7-[ O

Theorem 3.7 (Moore-Aronszajn). every pos def function k : X x X — R is also a reproducing kernel with a unique
corresponding RKHS.

Proof. assume k is symmetric, as well as pos def [prove this!]

So we want to specify a RKHS associated with k.

Consider functions of the form f =>""_, a;k(-,x;) for r > 1,a; € R,z; € X.

Let Ho = span{k(-,z) : © € X'}, so Hy is the set of these f.

if H D Ho, then k(-,z) € Hforallz € X

Define a function h st h(k(-,x),k(-,2')) = k(x,2’) of the foom h: (X - R) x (¥ - R) - R

define an inner product (-,-);, by <Z€:1 aik(~,xi),Z;:1Bjk(-,x;-)>ﬂ = Yoy 2y @iBih(k(e @), k(- 7)) =
D Z;:l o Bik(z;, )

This is an inner product [linear, symmetric, non-neg norm, 0 iff f=0]

finally, take # to be the completion of Hg, and extend (),, by completion.

And finally, (f,k(-,2))y = iy aik(c,24), k(- @) = Y4 ciki(2i, 2) = f(z) [by symmetry of k] O



3.2.1 More on RKHSs

Definition 3.8 (Alt def of RKHSs). # is an RKHS if the evaluation functionals ¢, : H — R, defined by d,. f = f(z)
are continuous for all x € X, or equivalently if d, is a bounded operator - i.e. ||d,||x* < oo.

Note this implies || f —glly =0 = f(z) = g(x) forall z € X.

Proposition 3.9 (Equivalence of definitions).

Proof. first def — second: [0, f| = [f(x)| = [ {f, k(,2)) [ < [|fllcl[kC 2)ll9e = VR, 2) - (| flln

other way uses R-r theorem O

Proposition 3.10 (Uniqueness of reproducing kernels). Each RKHS has a unique corresponding reproducing kernel.

Proof. assume there exists 2, k1 # ky. Then (f,ki(-,2) — k2(-,2))5, = --- =0, apply with f = ki (-, z)—ko(-,z) O
Proposition 3.11 (Uniqueness of RKHS). For any given kernel/pos def func, the RKHS is unique.

Theorem 3.12 (Representer theorem). There is always a solution to

f* = arg min R(f) + g([1£113,)
feHs

that takes the form

n
fr=" k(e a)
i=1
where the x; are the datapoints. If g is a strictly increasing function, all solutions have this form.

Proof. let fg be the projection of a function f onto span{k(-,z;) : i}, and let f;, = f — fs. Obviously fs =
21 aik(, z;) for some a; € R. Then 113, = 1513, + /213, > 1 fsll3, by Pythagoras. Thus, g(|If|I3,) >
gUlfellz,)-

R(f) = IS Ly, f(z) =230, L(y, (fs, k(- 2i))py, = R(fs) using def of f €RKHS, orthogonality O

Remark 3.13 (on the implications of the Representer theorem). e we can work with complex RKHS hypothesis
classes, but solution is still fairly simple

e kernel directly affects solution

e complexity is limited to n - good for large d, bad that we need to keep all data.
Remark 3.14 (on kernels/RKHSs). e RKHS are general and powerful

e can do ERM with solution in RKHS
e simple/analytic solutions to ERM as solutions end up being linear maps of kernels
e choosing kernel is v. important - some RKHSs too restrictive, others too broad

e bad scaling - at least O(n?) at training, O(n) at test

3.3 Constructing kernels

3 methods we have:

e define the feature map, take the inner product
e as a positive definite function
e choosing the RKHS H, and taking the unique reproducing kernel associated with it.
Lemma 3.15 (Mapping between spaces). given A : X — X, and a kernel k on X, k(A(z), A(z')) is a kernel on X

Lemma 3.16 (sums of kernels). given k1, ks on X and a1, 0 > 0, k = a1k + asks is a kernel [prove with pos def]



Lemma 3.17 (products of kernels). k1 on X, ko on Y, then k ((x,y), (z',y)) := k1(z,2")k2(y,y’) is a kernel, and
ifY =X, then k(z,z') = ki(x, 2" )ko(x,2") is also a kernel.

Definition 3.18 (Common kernels). e RBF: k(z,2') = exp(—#Hx — 2'||3). The RKHS contains functions
which are infinitely differentiable

e Matérn kernels: less smooth, only s times differentiable

general [slightly useless] form includes the Bessel function...
forv=s+1/2,

* v=1/2: k(z,2) zexp(—%Hm—x’H)
x v =23/2 k(z,2') = (1+ L —2'||) exp(— L[|z — 2'|))

as v — oo this converges to the RBF kernel

1£115,, o< [ f"(x)*dx + % [ f(z)*dz + 3—4 [ f(x)*dz for v = 3/2, demonstrating that || f||, directly
penalises derivatives

e constant k(z,2’) := ¢ > 0 [ useful for sums!]

e linear: k(z,2') =z "2’
e poly: k(z,2') = (c+ax"2')™ for c € R,m € N what about m = 1,¢ < 0?

sin?(w|z—a’
(_M)

e periodic (1d) k(z,2’) = exp 2 for v #£ 0, which has period p,

e Laplace: Matern w/ v =1/2
e Rational quadratic k(z,2') = (1 + ||z — 2'|3/(2a7?)) " for a,7 >0

Remark 3.19. In kernel (ridge) regression, we are doing linear regression in the hypothesis space, so we are comparing
yi to (f,k(-,2)),,, so the reproducing property is v. useful, as this simplifies to f(x;).

Remark 3.20. Confused about interpretation of sums of kernels etc - point about fitting linear reg, then doing stuff
on residuals

Remark 3.21 (Issues with choosing kernels). e many kernels use Euclidean distances, but in high-D everything
may far away from each other

e challenge is more about deciding which points are similar/close than ensuring the predictor is powerful enough
to discriminate/fit

4 Bayesian chapter?

5 Gaussian processes

parametric models collapse to the modal 6 of the posterior distribution p(6]|D)

non-parametric (in the sense that there's no w that we do w 'z with) don't have this problem, and if the model is
set up correctly, # may be infinite dimensional, but it marginalises out to something finite dimension.

instead of having a prior over 6 and the model using some set of functions fy, we have a prior over f directly, and
the posterior (assuming IID data, distributed as y; ~ f(z;) + 0%¢) becomes

N

p(f1D) o< p(f) [ [ p(wil £ ()

i=1

in practise, we want to only work with the set of RVs { f(z;)}icn.---



Definition 5.1 (Gaussian process). f is a GP if it is a stochastic process whos evaluations are jointly Gaussian - i.e.
[f(z1),..., f(xn)]T is multivariate Gaussian for any N, x;. It is specified by its mean function m : X — R, and a
covariance function k : X x X — R, so that m(z) = Ef(z) and k(x,2’) = E[(f(z) — m(x))(f(z") — m(z))], so
that

f(z1) m(x1) | | k(zi,21) - k(z1,2N)
: ~N : ; : : :
flzn) m(zy)| |k(zn,71) - k(zy,zN)
m K

Definition 5.2 (GP priors). Define a prior over m and k, though typically m = 0, as GPs are linear in their mean

Lemma 5.3 (Gaussian marginals and conditionals). Given z ~ N(u,X), we split its dimensions as
z 1 Y11 Y2
z = = , =
[22] a [Mz} [221 E22}
note that Y9, = X/, because of symmetry - why?

Then p(Zl) = N(Zl; M, 211), and
p(22,21) = N(z2; pi2 + S S11 (21 — p1), Tz — 21877 S1o)

6 GPs

WRITE UP SLIDES 1 AND 2

6.1 Approximations

Want to reduce O(n3) cost. 2 approaches - approx K, with a rank m approximation, so inversion is only O(m?),
or we summarise the dataset with m inducing datapoints, and fit the model on that dataset.

6.1.1 Low rank matrix approximations

If K, is a symmetric rank m approx to Ky, then K, = QQT for a n x m matrix Q.
Thus,

(f(m + 021) ) (@’ T+Q7Q) ' Q",
where QT Q is m x m, and can be caluclated in O(m?n). Fully calculating the inverse still takes O(n?m), but
applying it to a vector 3 only takes O(m?n).
() represents a m-dimensional feature mapping of X
Theorem 6.1 (Bochner's). Given k(z,x') is a stationary kernel k(x,z') = k(xz — z'), then

k(z,2') = 2k(0)E [cos(w @ + b) cos(w ' 2’ +b)],

where b ~ Unif(0,27), and w has density given by

p(w) x /56RP r(0) cos(w ' 8) dd

Definition 6.2 (Random Fourier Features ). For many common kernels, p(w) is simple - e.g. for RBF, p(w) ~

N(0,771)
So we can actually form an unbiased Monte Carlo estimate of the kernel by sampling w's and b's, and writing the
approximation as an inner product of feature maps

2k(0)

om(x) = - [cos(wlTx +b1),...,cos(w] = + bin)] ’

Remark 6.3. On RFF: it works pretty well on any finite interval, as m — oo (e.g. m = 100 works pretty well), but
it produces periodic functions, which means uncertainty estimates repeat, which is not ideal.



6.1.2 Sparse Gaussian Processes

summarise the datasat with m “pseudo” datapoints. these often overpredict uncertainty.

7 Deep Learningn



