
Advanced Topics in Statistical Machine Learning

Contents

Notation 0.1. λ ⪰ 0 implies that ∀i λi ≥ 0

Convexity - can also do via Hessian being positive semi-definite.

can do pos (semi) def by considering z⊤Az for arbitrary z, seeing if everything turns out to be a square....

trick for computing distributions, e.g. posteriors - p(w|D) must be a distribution, so we can lose all the scaling terms
and just compare shape in w

trick: for a scalar λ, λ = Trace(λ), and then if λ = x⊤z, say, λ = Tr(x⊤z) = Tr(z⊤x)

1 Basics/background

supervised learning, e.g. classification or regression

unsupervised learning

discriminative v. generative

1.1 ERM

[on discriminative supervised learning]

assume there is a joint distribution P[X,Y], have an iid sample from it, D
learning a function f : X → Y that will approximate Y |X = x

loss function general form
L : Y × Y × X → R+

almost always doesn’t depend on x, so generally L(y, f(x))

risk
R(f) := EX,Y [L(Y, f(X))]

hypothesis space H, optimal f (in H) is
f∗ = arg min

f∈H
R(f)

(or optimising over parameters θ ∈ H
empirical risk

R̂(f) :=
1

n

n∑
i=1

L(yi, f(xi))

if f is chosen independently of the data used in the empirical risk, this is an unbiased estimate of the risk. . . . but
if f is trained using this data it becomes a negatively biased because we have actively chosen f for which it will be
smaller

loss functions

lots available

softmax/ mappings with sign/sigmoid to turn real line to probs

0/1 loss - Bayes classifer is optimal

hinge loss - in SVMs,

expo

1

1.2 Constrained optimisation

Primal problem:

minimise: f(x)

st fi(x) ≤ 0 i ≤ m

hj(x) = 0 j ≤ n

the (primal) optimum value is p∗ = f0(x
∗). any x st fi(x) ≤ 0, hj(x) = 0 for all i, j is a primal feasible point

Lagrangian:

L(x;λ, ν) := f0(x) +

m∑
i−1

λifi(x) +

r∑
j=1

νjhj(x)

the dual variables are λ ∈ Rm, ν ∈ Rr.

dual problem:

maximise: inf
x∈D

L(x, λ, ν)

st λi ≥ 0 i ≤ m

to actually write this down: use differentiation/etc. to find the infx∈D

d∗ := supλ⪰0,ν infx∈D L(x, λ, ν)

weak duality: d∗ ≤ p∗

1.3 Lagrangian explanation

Given the primal problem f , we can consider

f̃(x) := f0

m∑
i=1

∞fi(x)>0 +

r∑
j=1

∞hj(x)̸=0,

and minimising f̃ is equivalent to minimising f under the constraints. Then

sup
λ⪰0,ν

L(x, λ, ν) = ˜f(x)

If we have no inequality constraints, considering the Lagrangian L(x, ν) := f(x) + νh(x) and differentiating, then
∇x,νL(x, ν) = 0 ⇐⇒ h(x) = 0 and ∇xf(x) = −ν∇xh(x), which implies that we have the optimum value within
the constraints, as the gradients of the objective and the constraints are opposite.

2 SVMs

two varieties: separable and inseparable data

margin for given weights w:

M(w) : +2min
i

1

∥w∥
∥w⊤xi + b∥

so the aim is to solve

maximise: M(w)

over w ∈ Rd

derivation:

2

� can rescale the weights however we like

� for any two points x+, xi st w
⊤x+ + b = 1, w⊤x− + b = −1, so ∥w∥∥x+ − xi∥ = 2, so the margin is 2/∥w∥

� when all the points are classified correctly - i.e. mini yi(w
⊤xi + b) = 1, relaxed to ≥ 1

� check start of proof, wasn’t paying attention

2.0.1 Inseparable data

add hinge loss

which rescales to regularised ERM

add new variables ξi, which are constrained to ξi ≥ h(yi(w
⊤xi + b)) by ξi ≥ 0, ξi ≥ 1− yi(w

⊤xi + b)

note we need to prove that it equals it at the optimum: simple logic based on the constraints used, fact we can
decrease ξi if > 0 and not equal to 1− yi(w

⊤xi + b)

standard form:

minimise: f0(w, b, ξ) :=
1

2
∥w∥2 + C

n∑
i=1

ξi

st fi(w, b, ξ) := 1− ξi − yi(w
⊤xi + b) ≤ 0 i ≤ m

fn+i(w, b, ξ) := −ξi ≤ 0 j ≤ n

Strong duality will hold, as the problem is convex with afffine constraints and a feasible solution will exist

So the Lagrangian is

L(w, b, ξ;α, λ) := 1
2∥w∥

2 + C
∑n

i=1 ξi

+
∑n

i=1 αi(1− ξi − yi(w
⊤xi + b)) +

∑n
i=1 λi(−ξi)

which we differentiate wrt the primal variables to get the dual g(α, λ) := infw,b,ξ L(w, b, ξ;α, λ)

� to get w =
∑n

i=1 αiyixi,
∑n

i=1 yiαi = 0 and αi = C − λi,

� so we get rid of λ and have αi ∈ [0, C] by the constraint on λ.

why we have equality constraints on the dual:

The result of the derivatives gives us
∑n

i=1 yiαi = 0 and αi = C − λi, which do not include the primal variables, so
they must hold, or the dual function g = −∞, as we can always change b/ξi

dual program:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
⊤
i xj

st
n∑

i=1

αiyi = 0

&0 ⪯ α ⪯ C

calculating vars

w is obvious, b is yimargin
− w⊤ximargin for any i st 0 < αi < C

types of datapoint:

� non support vectors, if αi = 0

3

– so λi = C − αi > 0, so ξi = 0

– and so yi(w
⊤xi + b) ≥ 1 (almost always > 1)

� margin support vectors, if αi ∈ (0, C):

– so must have that yi(w
⊤xi + b) = 1 − ξi, and since λi > 0, ξi = 0, so yi(w

⊤xi + b) = 1 = on the
boundary

� margin errors/ non-margin Support Vectors: αi = C > 0

– so yi(w
⊤xi + b) = 1 − ξi, and since λi = 0, ξi ≥ 0, which means yi(w

⊤xi + b) ≤ 1, which is a margin
error (as within the margin (even if classified correctly

Insights in the solution:

what a support vector is

bounded influence

weights are in the span of the datapoints

multi-class

1-vs-all

1-v-1, pick class that wins the most

3 Kernel methods

feature map x 7→ φ(x), where φ : X → H, where H is often infinite dimensional

in SVMs, data only appears in an inner product, so we just replace x⊤
i xj with k(xi, xj), where k is the inner product

in the space H.

Note the weights can’t be expressed with just k, as w =
∑n

i=1 αiyiφ(xi), though the intercept b can:

b = ymargin −
n∑

i=1

αiyi ϕ(xi)
⊤ϕ(xmargin)︸ ︷︷ ︸

k(xi,xmargin)

however the decision function is still good:

ŷ(x) = sign(w⊤ϕ(x) + b) = sign

(
n∑

i=1

αiyik(x, xi) + b

)

Standard kernels:

� polynomial kernel k(xi, xj) = (1 + x⊤
i xj)

d introduces d-order polynomial interactions, φ is a horrible map

� exponential/RBF kernel:

k(xi, xj) = exp

(
− 1

2γ2
∥xi − xj∥22

)
where the feature mapping is

φ(x) = exp

(
−1

2
x2

)[
1, x,

x2

√
2!
,
x3

√
3!
, ...,

xr

√
r!
, ...

]⊤

4

3.1 RKHS

standard inner products (on spaces over R), standard Hilbert space

Definition 3.1 (Kernel). k : X × X → R is a kernel if ∃a Hilbert space H and a map φ : X → H st ∀x, x′ ∈ X

k(x, x′) = ⟨φ(x), φ(x′)⟩H

Definition 3.2 (Positive definite function). k : X × X → R is postive definite if

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0 ∀n ≥ 1,∀ai ∈ R,∀xi ∈ X

which is equivalent to saying the matrix (Ki,j)i,j defined by Ki,j = k(xi, xj) is positive semi-definite

Notation 3.3. For kernels, we have strictly pos-def /pos def, for matrices pos-def/ pos-semi-def.

Lemma 3.4. All kernels are positive definite (proof by rearranging sums

3.2 RKHSs

Definition 3.5 (RKHS, reproducing kernel). Given H is a Hilbert space ⊆ {f : X → R}, k : X × X → R is a
reproducing kernel of H if:

� ∀x ∈ X : kx = y 7→ k(y, x) is in H

� ∀x ∈ X , ∀f ∈ H ⟨f, k(·, x)⟩H = f(x) (the reproducing property)

If H has such a k, then it is a RKHS.

Lemma 3.6 (Reproducing kernels are kernels). A reproducing kernel k is a normal kernel with the feature map
φ : x 7→ k(·, x), which is the canonical feature map

Proof. Given f = k(·, x′), we have [using defs of k, φ, fact ⟨·, ·⟩H is symmetric]

k(x, x′) = f(x) = ⟨f, k(·, x)⟩H = ⟨k(·, x′), k(·, x)⟩H = ⟨φ(x), φ(x′)⟩H
Theorem 3.7 (Moore-Aronszajn). every pos def function k : X ×X → R is also a reproducing kernel with a unique
corresponding RKHS.

Proof. assume k is symmetric, as well as pos def [prove this!]

So we want to specify a RKHS associated with k.

Consider functions of the form f =
∑r

i=1 αik(·, xi) for r ≥ 1, αi ∈ R, xi ∈ X .

Let H0 = span {k(·, x) : x ∈ X}, so H0 is the set of these f .

if H ⊃ H0, then k(·, x) ∈ H for all x ∈ X

Define a function h st h(k(·, x), k(·, x′)) = k(x, x′) of the form h : (X → R)× (X → R) → R

define an inner product ⟨·, ·⟩H by
〈∑r

i=1 αik(·, xi),
∑s

j=1 βjk(·, x′
j)
〉
H

:=
∑r

i=1

∑s
j=1 αiβjh(k(·, xi), k(·, x′

j)) =∑r
i=1

∑s
j=1 αiβjk(xi, x

′
j)

This is an inner product [linear, symmetric, non-neg norm, 0 iff f=0]

finally, take H to be the completion of H0, and extend ⟨⟩H by completion.

And finally, ⟨f, k(·, x)⟩H = ⟨
∑r

i=1 αik(·, xi), k(·, x)⟩ =
∑r

i=1 αiki(xi, x) = f(x) [by symmetry of k]

5

3.2.1 More on RKHSs

Definition 3.8 (Alt def of RKHSs). H is an RKHS if the evaluation functionals δx : H → R, defined by δxf = f(x)
are continuous for all x ∈ X , or equivalently if δx is a bounded operator - i.e. ∥δx∥H∗ < ∞.

Note this implies ∥f − g∥H = 0 =⇒ f(x) = g(x) for all x ∈ X .

Proposition 3.9 (Equivalence of definitions).

Proof. first def =⇒ second: |δxf | = |f(x)| = | ⟨f, k(·, x)⟩ | ≤ ∥f∥H∥k(·, x)∥H =
√

k(x, x) · ∥f∥H
other way uses R-r theorem

Proposition 3.10 (Uniqueness of reproducing kernels). Each RKHS has a unique corresponding reproducing kernel.

Proof. assume there exists 2, k1 ̸= k2. Then ⟨f, k1(·, x)− k2(·, x)⟩H = · · · = 0, apply with f = k1(·, x)−k2(·, x)

Proposition 3.11 (Uniqueness of RKHS). For any given kernel/pos def func, the RKHS is unique.

Theorem 3.12 (Representer theorem). There is always a solution to

f∗ = arg min
f∈Hk

R̂(f) + g(∥f∥2Hk
)

that takes the form

f∗ =

n∑
i=1

αik(·, xi)

where the xi are the datapoints. If g is a strictly increasing function, all solutions have this form.

Proof. let fS be the projection of a function f onto span{k(·, xi) : i}, and let f⊥ = f − fS . Obviously fS =∑n
i=1 αik(·, xi) for some αi ∈ R. Then ∥f∥2Hk

= ∥fS∥2Hk
+ ∥f⊥∥2Hk

≥ ∥fS∥2Hk
by Pythagoras. Thus, g(∥f∥2Hk

) ≥
g(∥f⊥∥2Hk

).

R̂(f) = 1
n

∑n
i=1 L(y, f(xi)) =

1
n

∑n
i=1 L(y, ⟨fS , k(·, xi)⟩Hk

= R̂(fS) using def of f ∈RKHS, orthogonality

Remark 3.13 (on the implications of the Representer theorem). � we can work with complex RKHS hypothesis
classes, but solution is still fairly simple

� kernel directly affects solution

� complexity is limited to n - good for large d, bad that we need to keep all data.

Remark 3.14 (on kernels/RKHSs). � RKHS are general and powerful

� can do ERM with solution in RKHS

� simple/analytic solutions to ERM as solutions end up being linear maps of kernels

� choosing kernel is v. important - some RKHSs too restrictive, others too broad

� bad scaling - at least O(n2) at training, O(n) at test

3.3 Constructing kernels

3 methods we have:

� define the feature map, take the inner product

� as a positive definite function

� choosing the RKHS H, and taking the unique reproducing kernel associated with it.

Lemma 3.15 (Mapping between spaces). given A : X → X̃ , and a kernel k on X̃ , k(A(x), A(x′)) is a kernel on X

Lemma 3.16 (sums of kernels). given k1, k2 on X and α1, α2 > 0, k = α1k1+α2k2 is a kernel [prove with pos def]

6

Lemma 3.17 (products of kernels). k1 on X , k2 on Y, then k ((x, y), (x′, y)) := k1(x, x
′)k2(y, y

′) is a kernel, and
if Y = X , then k(x, x′) = k1(x, x

′)k2(x, x
′) is also a kernel.

Definition 3.18 (Common kernels). � RBF: k(x, x′) = exp(− 1
2γ2 ∥x − x′∥22). The RKHS contains functions

which are infinitely differentiable

� Matérn kernels: less smooth, only s times differentiable

– general [slightly useless] form includes the Bessel function...

– for ν = s+ 1/2,

* ν = 1/2: k(x, x′) = exp(− 1
γ ∥x− x′∥)

* ν = 3/2: k(x, x′) = (1 +
√
3

γ ∥x− x′∥) exp(−
√
3

γ ∥x− x′∥)
*

– as ν → ∞ this converges to the RBF kernel

– ∥f∥2Hk
∝
´
f ′′(x)2dx + 6

γ2

´
f ′(x)2dx + 9

γ4

´
f(x)2dx for ν = 3/2, demonstrating that ∥f∥Hk

directly
penalises derivatives

� constant k(x, x′) := c > 0 [useful for sums!]

� linear: k(x, x′) = x⊤x′

� poly: k(x, x′) = (c+ x⊤x′)m for c ∈ R,m ∈ N what about m = 1, c < 0?

� periodic (1d) k(x, x′) = exp(− 2 sin2(π|x−x′|/p)
γ2) for γ ̸= 0, which has period p,

� Laplace: Matern w/ ν = 1/2

� Rational quadratic k(x, x′) =
(
1 + ∥x− x′∥22/(2αγ2)

)−α
for α, γ > 0

Remark 3.19. In kernel (ridge) regression, we are doing linear regression in the hypothesis space, so we are comparing
yi to ⟨f, k(·, xi)⟩H, so the reproducing property is v. useful, as this simplifies to f(xi).

Remark 3.20. Confused about interpretation of sums of kernels etc - point about fitting linear reg, then doing stuff
on residuals

Remark 3.21 (Issues with choosing kernels). � many kernels use Euclidean distances, but in high-D everything
may far away from each other

� challenge is more about deciding which points are similar/close than ensuring the predictor is powerful enough
to discriminate/fit

4 Bayesian chapter?

5 Gaussian processes

parametric models collapse to the modal θ of the posterior distribution p(θ|D)

non-parametric (in the sense that there’s no w that we do w⊤x with) don’t have this problem, and if the model is
set up correctly, θ may be infinite dimensional, but it marginalises out to something finite dimension.

instead of having a prior over θ and the model using some set of functions fθ, we have a prior over f directly, and
the posterior (assuming IID data, distributed as yi ∼ f(xi) + σ2ε) becomes

p(f |D) ∝ p(f)

N∏
i=1

p(yi|f(xi))

in practise, we want to only work with the set of RVs {f(xi)}i∈[N]....

7

Definition 5.1 (Gaussian process). f is a GP if it is a stochastic process whos evaluations are jointly Gaussian - i.e.
[f(x1), ..., f(xN)]⊤ is multivariate Gaussian for any N, xi. It is specified by its mean function m : X → R, and a
covariance function k : X × X → R, so that m(x) = Ef(x) and k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))], so
that

 f(x1)
...

f(xN)

 ∼ N

m(x1)

...
m(xN)

︸ ︷︷ ︸

m

,

k(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1) · · · k(xN , xN)

︸ ︷︷ ︸

K

Definition 5.2 (GP priors). Define a prior over m and k, though typically m = 0, as GPs are linear in their mean

Lemma 5.3 (Gaussian marginals and conditionals). Given z ∼ N (µ,Σ), we split its dimensions as

z =

[
z1

z2

]
, µ =

[
µ1

µ2

]
,Σ =

[
Σ11 Σ12

Σ21 Σ22

]
note that Σ21 = Σ⊤

12 because of symmetry - why?

Then p(z1) = N (z1;µ1,Σ11), and

p(z2, z1) = N (z2;µ2 +Σ21Σ
−1
11 (z1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12)

6 GPs

WRITE UP SLIDES 1 AND 2

6.1 Approximations

Want to reduce O(n3) cost. 2 approaches - approx Kxx with a rank m approximation, so inversion is only O(m3),
or we summarise the dataset with m inducing datapoints, and fit the model on that dataset.

6.1.1 Low rank matrix approximations

If K̃xx is a symmetric rank m approx to Kxx, then K̃xx = QQ⊤ for a n×m matrix Q.

Thus, (
K̃xx + σ2I

)−1

= σ−2I − σ−2Q
(
σ2I +Q⊤Q

)−1
Q⊤,

where Q⊤Q is m × m, and can be caluclated in O(m2n). Fully calculating the inverse still takes O(n2m), but
applying it to a vector β only takes O(m2n).

Q represents a m-dimensional feature mapping of X

Theorem 6.1 (Bochner’s). Given k(x, x′) is a stationary kernel k(x, x′) = κ(x− x′), then

k(x, x′) = 2κ(0)E
[
cos(ω⊤x+ b) cos(ω⊤x′ + b)

]
,

where b ∼ Unif(0, 2π), and ω has density given by

p(ω) ∝
ˆ
δ∈Rp

κ(δ) cos(ω⊤δ) dδ

Definition 6.2 (Random Fourier Features). For many common kernels, p(ω) is simple - e.g. for RBF, p(ω) ∼
N (0, γ−2I)

So we can actually form an unbiased Monte Carlo estimate of the kernel by sampling ω’s and b′s, and writing the
approximation as an inner product of feature maps

φm(x) =

√
2κ(0)

m

[
cos(ω⊤

1 x+ b1), ..., cos(ω
⊤
1 x+ bm)

]⊤
Remark 6.3. On RFF: it works pretty well on any finite interval, as m → ∞ (e.g. m = 100 works pretty well), but
it produces periodic functions, which means uncertainty estimates repeat, which is not ideal.

8

6.1.2 Sparse Gaussian Processes

summarise the datasat with m “pseudo” datapoints. these often overpredict uncertainty.

7 Deep Learningn

9

